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Abstract. We propose a space-time finite volume scheme on moving Chimera grids for a general
advection-diffusion problem. Special care is devoted to grid overlapping zones in order to devise a
compact and accurate discretization stencil to exchange information between different mesh patches.
Like in the arbitrary high order derivatives method, the equations are discretized on a space-time
slab. Thus, instead of time-dependent spatial transmission conditions between relatively moving
grid blocks, we define interpolation polynomials on arbitrarily intersecting space-time cells at the
block boundaries. Through this scheme, a mesh-free FEM-predictor/FVM-corrector approach is
employed for representing the solution. In this discretization framework, a new space-time local Lax--
Friederichs stabilization speed is defined by considering both the advective and the diffusive nature
of the equation. The numerical illustrations for linear and nonlinear systems show that background
and foreground moving meshes do not introduce spurious perturbation to the solution, uniformly
reaching second order accuracy in space and time. Finally, it is shown that several foreground
meshes, possibly overlapping and with independent displacements, can be employed thanks to this
approach.

Key words. Chimera mesh, overset grid, finite volume, second order scheme, compact trans-
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1. Introduction. One of the main difficulties for the simulation of a phenom-
enon modeled by a partial differential equation (PDE) is the geometrical modeling
of the computational domain with a single mesh block. This problem is especially
relevant when the domain is complex or its shape and its topology evolve dur-
ing the simulation. Classical approaches to tackle this problem include the arbi-
trary Lagrangian--Eulerian (ALE) method, fictitious domain approaches, and Chimera
grids. ALE methods [18] allow a certain degree of mesh deformation and adaptation
thanks to an appropriate reformulation of the governing equations and to sophisti-
cated and efficient grid displacement algorithms. However, when the grid deformation
leads to excessively stretched cells, a delicate (and computationally expensive) global
re-meshing step may be necessary. In turn, this operation can introduce approxima-
tion irregularities that are caused by the interpolation of the solution from the old
grid to the new one. In fictitious domain approaches, including immersed boundary
or penalization methods, the original problem is discretized on a simple mesh, usually
structured and cartesian, constant in time [14, 25, 1]. The grid hence does not neces-
sarily fit the physical boundaries and special care must be taken to attain a sufficient
degree of accuracy at the boundaries. Moreover, the presence of thin boundary layers
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SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID A525

can significantly reduce the computational advantages deriving from a simple meshing
algorithm, because of the uniform aspect ratio of the mesh.

We focus our investigations on Chimera grids [35, 5, 22, 26]. Chimera grids
consist of multiple overlapping mesh blocks that together define an overset grid used
to spatially discretize a PDE [30, 31, 29]. Usually, one has a background mesh that
includes one or more foreground mesh patches that are fitted to the physical domain
boundaries. This mesh generation approach considerably simplifies the task of mesh
adaptation in the case of boundary layers, changing geometry for an unsteady problem
(e.g., fluid-structure interaction problems in fluid dynamics) and for unsteady multiply
connected domains [2, 3, 28, 4, 9]. Once the multiple mesh patches are generated,
they are collated in order to obtain an appropriate overlapping zone between the
neighboring blocks [22]. In the overlap zones, the exchange of solution information
from one grid to another is performed. A compact transmission condition is generally
sought in order to limit communications between the grids. Namely, a compact stencil
only composed of the first layer of cells is defined around any cell.

In this paper, we propose a space-time finite volume scheme on Chimera grids.
Our objective is to combine some aspects of an ALE approach, notably its flexibility
with respect to grid displacement and deformation, to the multiblock discretization
strategy of overset grids. In particular, we will devote special care to grid overlapping
zones in order to devise a compact and accurate discertization stencil to exchange in-
formation between different mesh patches, in the spirit of previous works on cartesian
hierarchical grids [27]. We then apply this approach to integrate linear and nonlin-
ear advection-diffusion PDEs and show how the method can exploit the versatility of
the Chimera meshes to reach second order accuracy in unsteady multiply connected
domains.

The numerical solution on Chimera grids is obtained by exchanging data through
the fringe cells at the overlapping zone. For example, in [10, 15, 36, 21], fringe (namely
donor) cells of a block in proximity of the overlapping zone provide the information to
the fringe (i.e., receptor) cells of another block by polynomial interpolation. In [16] a
coarse grid is automatically generated and a connection of interpolation information
at the overlapping zone is presented through a multigrid approach.

Another way of making the different blocks communicate is to use proper do-
main decomposition methods (e.g., Schwartz, Dirichlet--Neumann, or Dirichlet--Robin
methods). In particular, each mesh block is considered as a decomposition of the do-
main and the overlapping zones are the interfaces for coupling the different blocks.
According to these approaches, typically iterative discrete methods are employed. For
this two-way communication, the reader is referred to [19] for further details.

In the same framework, other approaches connect the background and the fore-
ground meshes, such as the DRAGON grids [20] for which the overlapping zone is
replaced by a nonstructured grid during a further stage by preserving the body-fitting
advantages of the Chimera meshes.

In contrast, here we derive a second order compact transmission condition by
properly defining a set of cells, i.e. the stencil, that belong to both the back- and
foreground meshes, over which the solution is interpolated in space and time by an
appropriate polynomial. This hybrid stencil allows a smooth discretization transition
from one block to another. In particular, first a mesh-free discontinuous FEM-solution
is recovered and then an FVM-correction is performed in any cell by using information
provided by near cells. Thus, for fringe cells, the solution is obtained by combining
values from different grids.
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A526 M. BERGMANN, M. G. CARLINO AND A. IOLLO

The Arbitrary high order DERivatives (ADER) method provides an ideal setting
for pursuing our purpose. In [11, 33, 32, 8], the authors presented a method to recover
an accurate solution for hyperbolic PDEs with an arbitrary order of accuracy on a
single mesh block. More recently, in [7] the authors presented an ADER discontinuous
Galerkin scheme with an a posteriori subcell finite volume limiter on fixed and moving
grids such as space-time adaptive Cartesian adaptive mesh refinement meshes. The
numerical scheme treats the temporal variable indistinctly with respect to the spatial
variables by defining the solution on a space-time slab. This discretization approach,
therefore, allows us to reconsider the problem of Chimera grids transmission condi-
tions: instead of time-dependent spatial transmission conditions between relatively
moving grid blocks, we define interpolation polynomials on arbitrarily intersecting
space-time cells at the block boundaries.

In the ADER scheme a local space-time weak solution of the problem from the
generic time t to t+\Delta t is computed in every single space-time cell. This solution is
defined as the predictor. The prediction step is local and hence embarrassingly parallel,
because the solution is calculated independently of the information of the neighboring
cells. Then, in the subsequent stage of correction, the computation of a space-time
numerical flux between neighboring cells provides the appropriate stabilization of
the integration scheme. We extend this prediction-correction method to advection-
diffusion PDEs on overset grids and propose a space-time flux among the space-time
cells that provides improved stabilization and precision as it takes into account both
the advective and the diffusive nature of the equation.

Let \Omega (t) \subset \BbbR d be the time-dependent computational domain and let T be a
positive real. In the following we consider the parabolic problem, find u : \Omega (t) \times 
[0, T ]\rightarrow \BbbR \delta such that

(1.1) \partial t\bfitu +\nabla \cdot \bfitF (\bfitu ,\nabla \bfitu ) = \bfitf , \bfitx \in \Omega (t), t \in [0, T ],

closed with appropriate initial and boundary conditions. Problem (1.1) is a rather gen-
eral representation of an advection-diffusion model. In (1.1) the diffusive-convective
vector \bfitF (\bfitu ,\nabla \bfitu ), eventually nonlinear, and the force term \bfitf (\bfitx , t) are defined. In
particular, the problem is linear when the diffusive-convective term is written as
\bfitF (\bfitu ,\nabla \bfitu ) = A\bfitu  - \nu \nabla \bfitu , where A : \Omega \times [0, T ] \rightarrow \BbbR \delta \times \delta is the advective field and
\nu : \Omega \times [0, T ]\rightarrow \BbbR + is the diffusion parameter.

In section 2 the formal definition of the overset (Chimera) grid is given. The
predictor-corrector method on a Chimera mesh is then derived in section 3. In section
4 the new local Lax--Friederichs (LLF) stabilization term is introduced and contrasted
with the LLF term from the literature. Section 5 is devoted to the numerical results.
In particular, first the second order analysis is conducted on linear one-dimensional
(1D) and 2D test cases; successively, we focus on the stability of the method by
comparing the performances of the different LLF fluxes. At the end of the numerical
test cases section, we show results for a nonlinear system of PDEs, for multiblock grid
setting, meshes, and time-dependent overset grids for multiply connected domain.
Conclusions are reported in section 6.

2. The overset grid. An overset grid or Chimera mesh is a set of mesh blocks
covering the computational domain. Each block may overlap some other block(s)
in some particular subregion(s) called overlapping zone(s). Once the multiple mesh
patches are generated, they are collated in order to generate an appropriate topology
[22]. Consequently, an overlapping zone between two neighboring blocks is defined.
For the sake of simplicity with no loss of generality, the whole method is explained
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SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID A527

Fig. 1. Example of Chimera grid configuration. In black is the background mesh and in pink
the foreground mesh.

by considering a two-blocks overset grid (i.e., the background and the foreground
meshes). For multiple-block meshes (e.g., \scrT 1, . . . , \scrT N ), a hierarchy of meshes from
the background to the foreground is defined (e.g., \scrT 1 < \cdot \cdot \cdot < \scrT N ). Successively
the presented algorithm for setting the overset grid is performed from one mesh to
the union of all other meshes toward the background (e.g., \scrT i for

\bigcup i - 1
j=1 \scrT j for any

i = 2, . . . , N). In section 5.4.2 of test cases, a multiple-block setting is presented.
Figure 1 shows an overset grid; in black there is the background mesh and in blue
the foreground mesh. In particular, the foreground mesh can move and deform. The
overlapping zone is necessary for the communication and data transfer from one mesh
to the other.

In this work, the cell of any block mesh is considered quadrilateral. In particular,
when all the cells are squared, the mesh is uniform. When the cells are either squared
or rectangular and the edges are oriented as the Cartesian axes, the mesh is said to
be Cartesian.

2.1. The automatic definition of the stencil at the transmission condi-
tion. Let \scrT k = \{ \Omega k

i \} 
Nk
i=1 be the partition composed of Nk cells referring to the kth

block mesh (in order to simplify the notation, we will omit the superscript k to the
cell \Omega k

i by writing \Omega i); moreover, let \scrS i be the stencil centered over the cell \Omega i. Thus,
stencil \scrS i is the set collecting the indexes of neighboring cells to \Omega i. By abuse of
language, sometimes we will refer to the physical set \Omega i \cup 

\bigcup 
j\in \scrS i

\Omega j as the stencil.
It is possible to distinguish two classes of cells with respect to their proximity to

the overlapping interface. The definition of the stencil depends on the class.
If cell \Omega i is not at the boundary of the overlapping zone (Figure 2(a)), the stencil

\scrS i is composed of all the cells \Omega j sharing at least one vertex with \Omega i. Thus, if \Omega i

belongs to the partition \scrT 1, all cells \Omega j , with j \in \scrS i, also belong to \scrT 1.
If the cell \Omega i of partition \scrT k is at the boundary of the interface, it is no longer

possible to use the criterion of the cells sharing at least a vertex. In fact, there will
be at least one edge eil not shared by any other cell of the same partition (see the
right edge of cell \Omega 16 in Figure 2(b)). For these cells, we aim to automatically find
the other cells of partition \scrT j (j \not = k) belonging to the stencil. Let the extremes of
the edge be indicated as \bfitv 1 and \bfitv 2 and its middle point with \bfitv 3, respectively. Point
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A528 M. BERGMANN, M. G. CARLINO AND A. IOLLO

(a) A stencil of cells in the same par-
tition. Continuous line for the stencil
\scrS 13 = \{ 7, 8, 9, 12, 14, 17, 18, 19\} .

(b) A stencil of cells not belonging to the
same partition. Continuous line for the
stencil \scrS 16 = \{ 1, 4, 7, 13, 14, 17, 19, 20\} .

Fig. 2. Two possible stencils: on the left the stencil is in the same partition; on the right the
stencil is composed of cells not belonging to the same partition.

\bfitc  \star is the center of mass of generic cell \Omega  \star . For our numerical tests, Algorithm 2.1 is
adopted through two steps:

1. look for the nodes of cells of the other partition \scrT j minimizing the Euclidean
distance with respect to points \bfitv \mu , \mu = 1, 2, 3 (line 5, see Figure 3(a));

2. compute the symmetric points \~\bfitv \mu of center \bfitc ki with respect to points \bfitv \mu 

for \mu = 1, 2, 3 (line 6), then look for the cells of partition \scrT j whose centers
minimize the Euclidean distance with the three symmetric points (line 7; see
Figure 3(b)).

For the edges shared by other cells in the same partition, the cells of the stencil will
be those sharing at least one vertex (as cells of indexes 13, 14, 17, 19, and 20 in Figure
2(b)).

The routine presented in this section will be run whenever the foreground mesh
configuration as well as the hole changes.

Algorithm 2.1 could not define a compact stencil in the case of widely different
mesh spacing. In this case, more than three points \bfitv \mu can be considered for lines 5
and 6. Moreover, a weighted symmetry (possibly led by the different spacing) can be
performed at line 6.

Algorithm 2.1 Compute stencil for cells at the boundary of the overlapping zone.

Input: \Omega k
i , e

k
il, \scrT j ,\scrS ki ;  \triangleleft j \not = k, i.e., \scrT j is the other partition with respect to \scrT k

1: Initialize \bfitv 1 and \bfitv 2 as the two vertexes of edge ekil;
2: \bfitv 3 \leftarrow (\bfitv 1 + \bfitv 2)/2;  \triangleleft Middle point of edge ekil
3: \scrZ j \leftarrow \emptyset ;  \triangleleft Temporary set of indexes of partition \scrT j
4: for \mu = 1, 2, 3 do
5: \scrZ j \leftarrow \scrZ j \cup \{ n = 1, . . . , Nj : \| \bfitv \mu  - \bfitc jn\| \leq \| \bfitv \mu  - \bfitc jm\| \forall m = 1, . . . , Nj\} ;
6: \~\bfitv \leftarrow 2\bfitv \mu  - \bfitc ki ;  \triangleleft Symmetric point of cellcenter \bfitc ki of \Omega k

i with respect to \bfitv \mu 

7: \scrZ j \leftarrow \scrZ j \cup \{ n = 1, . . . , Nj : \| \~\bfitv  - \bfitc jn\| \leq \| \~\bfitv  - \bfitc jm\| \forall m = 1, . . . , Nj\} ;
8: \scrS ki \leftarrow \scrS i \cup \scrZ j ;
9: return \scrS kiD

ow
nl

oa
de

d 
11

/2
8/

22
 to

 1
47

.2
10

.2
15

.1
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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(a) First step: by identifying the vertexes
\bfitv 1 and \bfitv 2 and the middle point \bfitv 3 of the
edge on the boundary cell \Omega 16 (blue full
dots), look for the nodes of cells in the
partition \scrT 1 (black empty dots) minimiz-
ing the Euclidean distance with respect to
those points.

(b) Second step: by identifying the sym-
metric points \~\bfitv \mu , \mu = 1, 2, 3 (red full dots)
of the node of the cell \Omega 16 (blue empty dot)
with respect to the vertexes and the middle
point of the not shared edge, look for the
nodes of cells in the partition \scrT 1 minimiz-
ing the Euclidean distance to those points.

Fig. 3. The two steps for the research of cells in the partition \scrT 1 for the cell \Omega 16 \in \scrT 2.

3. The numerical method. Once the stencil has been defined, the numerical
method can both numerically solve problem (1.1) and eventually evolve the overset
grid. In this section the scheme is presented. The method consists in a FEM-predictor
FVM-corrector scheme stabilized with an LLF approach whose stabilization coefficient
is explained in the following section.

3.1. Local polynomial reconstruction. The first step of the numerical method
is to recover a reconstruction of the solution over any point of the actual cell \Omega i. Since
the scheme is cell-centered, at time tn, we would like to extend (at least locally) the
solution to the whole cell by exploiting the information in the cells of the stencil refer-
ring to \Omega n

i . In order to explain the reconstruction, let us consider a generic regular1

function \phi : E \rightarrow \BbbR by identifying the stencil E = \Omega n
i \cup 

\bigcup 
j\in \scrS i

\Omega n
j . We remark that,

due to the overlapping zone, the cell composing the subdomain E does not neces-
sarily fulfill the nonoverlapping condition, i.e., it could be verified that there are a
couple of indexes k, l \in \{ i\} \cup \scrS i such that \Omega n

k \cap \Omega n
l \not = \emptyset . Let us suppose to know

the value of function \phi over the center of mass (xk, yk) = \bfitx k, with k \in \{ i\} \cup \scrS i, of
any \Omega k composing E. We would like to have a polynomial function \Pi i\phi (x, y) for any
(x, y) \in E by using the knowledge of the function \phi only on the centers of mass. Let
us define \phi k = \phi (xk, yk). For any (x, y) \in E it is always possible to write the Taylor's
polynomial truncated to the quadratic terms with respect to \phi i:

(3.1)
\phi (x, y) = \phi i + (\partial x\phi )i (x - xi) + (\partial y\phi )i (y  - yi) + (\partial 2

xy\phi )i (x - xi)(y  - yi)

+
1

2
(\partial 2

xx\phi )i (x - xi)
2 +

1

2
(\partial 2

yy\phi )i (y  - yi)
2 +\scrO (H3)

with H = max\{ | x - xi| , | y  - yi| \} . In the expansion (3.1) all the derivatives of \phi i are
unknown. Moreover, by renaming those derivatives as

(3.2) p1 = (\partial x\phi )i p2 = (\partial y\phi )i p3 = (\partial 2
xy\phi )i p4 = (\partial 2

xx\phi )i p5 = (\partial 2
yy\phi )i,

1We require at least \phi \in C2(E).
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the Taylor's expansion (3.1) can be seen as a linear combination of the components
of the basis \{ 1, x  - xi, y  - yi, (x  - xi)(y  - yi),

1
2 (x  - xi)

2, 1
2 (y  - yi)

2\} which defines
the polynomial space function \scrQ 2 of quadratic polynomials centered in \bfitx i; thus the
polynomial interpolation function \Pi i\phi reads
(3.3)

\Pi i\phi (x, y) = \phi i+p1(x - xi)+p2(y - yi)+p3(x - xi)(y - yi)+
1

2
p4(x - xi)

2+
1

2
p5(y - yi)2

with the polynomial coefficients pl, l = 1, . . . , 5, to be sought. By imposing as a
constraint that the polynomial \Pi i\phi (x, y) exactly coincides with the function \phi on the
nodes, i.e., \Pi i\phi (xj , yj) = \phi j for any j \in \scrS i, the system in the unknown polynomial
coefficients arises:

(3.4)

\left[   h
x
ik hy

ik hx
ikh

y
ik

1
2 (h

x
ik)

2 1
2 (h

y
ik)

2

...
...

...
...

...
hx
ij hy

ij hx
ijh

y
ij

1
2 (h

x
ij)

2 1
2 (h

y
ij)

2

\right]   
\left[   p1...
p5

\right]   =

\left[   \delta \phi ik

...
\delta \phi ij

\right]   ,

with hx
ij = xj  - xi, h

y
ij = yj  - yi and \delta \phi ij = \phi j  - \phi i, for j \in \scrS i. The algebraic

system (3.4) has to be solved in a least-squares sense if | \scrS i| > 5. Moreover, if the
chosen polynomial basis is not reduced, namely if the Taylor's expansion (3.1) is
arrested to the bilinear or linear terms, the stencil has to contain at least five cells in
order to ensure a solution for (3.4). The proposed \scrP 2-interpolation, with the second
order accurate scheme, fulfills the condition for the accuracy in the interpolation
for overlapping zones whose depth do degrades as the characteristic length h of the
chimera mesh (i.e., do = \scrO (h)) [9].

This method allows us to locally reconstruct all over the stencil a given function.
If the function is defined over the computational domain \Omega \subset \BbbR 2 and it is (at least
locally) C2, then the reconstruction is locally computed over any stencil and the
ensured order of convergence is 3. On the contrary, if the solution presents propagating
shock waves or discontinuities, this interpolation is no longer adequate because of the
well-known Gibbs phenomenon, for which spurious oscillations are produced near the
discontinuity. For those cases, other interpolations could be adopted, such as the
central weighted ENO for hyperbolic equations for moving meshes in [11].

In what follows, the local polynomial reconstruction \Pi i\bfitu 
n will be referred to as

\bfitw n
i .

3.2. Local space-time Galerkin predictor. Let the time interval [0, T ] be
subdivided into N subintervals [tn, tn+1] with n = 0, . . . , N  - 1; thus for a generic
time-dependent variable \bfitg (t), we define \bfitg n for \bfitg n = \bfitg (tn). In particular, the domain
\Omega n and the solution \bfitu n at time tn are considered the actual spatial configuration and
the actual time, respectively. Let \scrC ni = \Omega i(t) \times [tn, tn+1] be the physical space-time
cell whose lower and upper bases represent the evolution of cell \Omega i(t) from tn to tn+1.
First, the governing equation (1.1) is rewritten with respect to a space-time reference
system identified by the independent variables \bfitxi \equiv (\xi , \eta , \tau ) in the unit cube \^\scrC = [0, 1]3.
Let \Xi = (\xi , \eta ) be the reference spatial vector. Inspired by [17], the governing equation
is discretized using an efficient nodal formulation of space-time nodes given by a tensor
product of Gauss--Legendre quadrature points along space and time directions. This
choice defines an L2-orthogonal Lagrange basis used for the definition of the Galerkin
solution. For our purposes, the single direction nodes over the unit interval [0, 1] are
\{ (5  - 

\surd 
15)/10; 1/2; (5 +

\surd 
15)/10\} . Consequently, over a space-time cell there will

be 27 Gauss--Legendre nodes \^\bfitxi m and 27 Lagrange polynomial \theta l : \^\scrC \rightarrow \BbbR such that

D
ow

nl
oa

de
d 

11
/2

8/
22

 to
 1

47
.2

10
.2

15
.1

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCHEME FOR ADVECTION-DIFFUSION ON OVERSET GRID A531

\theta l(\^\bfitxi m) = \delta lm and
\int 
\^\scrC \theta l\theta m d\bfitxi = \delta lm\| \theta l\| 2L2( \^\scrC ), with \delta lm the Kronecher's symbol. Let

m : \{ 1, 2, 3\} 3 \rightarrow \{ 1, . . . , 27\} be a discrete map from a single direction index to the
global 3D index defined as

m(i, j, k) = ij + (j  - 1)(3 - i) + 9(k  - 1),

where indexes i, j, k \in \{ 1, 2, 3\} lead the discretization along \xi , \eta , \tau , respectively. By

denoting the Gauss--Legendre nodes with \^\xi i, \^\eta j , and \^\tau k along \xi , \eta , and \tau , respectively,

and with \theta \xi i (\xi ), \theta 
\eta 
j (\eta ), and \theta \tau k(\tau ) the Lagrange polynomial for \xi -, \eta -, and \tau -directions,

respectively, the 3D Gauss--Legendre node \^\bfitxi l and its associated Lagrange's polynomial
\theta l(\bfitxi ) read

\^\bfitxi l = (\^\xi i, \^\eta j , \^\tau k); \theta l(\xi , \eta , \tau ) = \theta \xi i (\xi )\theta 
\eta 
j (\eta )\theta 

\tau 
k(\tau ),

with index l = m(i, j, k).
We want to solve the following problem: find \bfitq : \scrC ni \rightarrow \BbbR \delta such that

(3.5)

\Biggl\{ 
\partial t\bfitq +\nabla \cdot \bfitF (\bfitq ,\nabla \bfitq ) = \bfitf in \scrC ni ,
\bfitq | t=tn = \bfitw n

i on \Omega n
i ,

which is problem (1.1) restricted to the space-time cell \scrC ni and redefined as a boundary
value problem. We denote with \bfitq h as the discretized solution of (3.5). In order to
refer problem (3.5) to the reference domain \^\scrC , we use a map\scrM i : \^\scrC \rightarrow \scrC ni ,

(3.6) \scrM i :

\left\{     
x = x(\xi , \eta , \tau ),

y = y(\xi , \eta , \tau ),

t = tn +\Delta t \tau ,

such that any space-time point \bfitx \equiv (x, y, t) in the physical space-time cell \scrC ni is a

function \bfitx = \bfitx (\bfitxi ) with \bfitxi \in \^\scrC (see Figure 4). Time t is considered as a linear function
of \tau . From map (3.6), we define the Jacobian matrix J as

(3.7) J =
d\bfitx 

d\bfitxi 
=

\left[  x\xi x\eta x\tau 

y\xi y\eta y\tau 
0 0 \Delta t

\right]  ,

whose inverse is

(3.8) J - 1 =
d\bfitxi 

d\bfitx 
=

\left[  \xi x \xi y \xi t
\eta x \eta y \eta t
0 0 1/\Delta t

\right]  =

\biggl[ 
J - 1
s \Xi t

0 1/\Delta t

\biggr] 
.

Fig. 4. Representation of the map \scrM i from the reference space-time cell \^\scrC to the physical
space-time cell \scrC n

i .
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A532 M. BERGMANN, M. G. CARLINO AND A. IOLLO

In the above notation, we call J - 1
s the restriction to the spatial coordinates of the

inverse of the Jacobian matrix

(3.9) J - 1
s =

\biggl[ 
\xi x \xi y
\eta x \eta y

\biggr] 
and \Xi t = [\xi t, \eta t]

T the derivative of the spatial reference vector with respect to time.
Through (3.9), the problem in the reference domain reads

(3.10) \partial \tau \bfitq +\Delta t\bfscrF \ast ( \^\nabla \bfitq ) + \Delta tJ - T
s

\^\nabla \cdot \bfscrF \ast \ast (\bfitq , \^\nabla \bfitq ) = \Delta t\bfitf ,

where

\partial t\bfitq =
\partial \tau \bfitq 

\Delta t
+ \scrF \ast ( \^\nabla \bfitq ); \bfscrF \ast ( \^\nabla \bfitq ) = \^\nabla q\Xi t;

\bfscrF \ast \ast (\bfitq , \^\nabla \bfitq ) = \bfitF (\bfitq , J - T
s

\^\nabla \bfitq ) = (\bfscrF \ast \ast 
\xi ,\bfscrF \ast \ast 

\eta ); \^\nabla =

\biggl[ 
\partial \xi 
\partial \eta 

\biggr] 
.

The hat differential operators refer to reference space variables \xi and \eta in the reference
space-time cell \^\scrC . By abuse of notation and for the sake of simplicity, we call all
functions involved in both equations (3.5) and (3.10) by the same symbol (e.g., \bfitq 
and \bfitf ) even though they take inputs in the physical space-time cell \scrC ni and in the

reference space-time cell \^\scrC , respectively. In order to weaken (3.10), the following
functional space is defined:

\Theta =

\biggl\{ 
v \in H1( \^\scrC : [0, 1] \ni \tau \mapsto \rightarrow v(\xi , \eta , \tau ) \in L2((0, 1)2)

\biggr\} 
,

being the subspace of Sobolev space H1( \^\scrC ) of functions L2((0, 1)2)-integrable at any
fixed reference time \tau . Moreover, the following notation is introduced:

\langle f, \bfitg \rangle =
\int 
\^\scrC 
f\bfitg d\bfitxi ;

[f, \bfitg ]\tau =

\int 1

0

\int 1

0

f(\xi , \eta , \tau )\bfitg (\xi , \eta , \tau ) d\Xi \forall f \in \Theta , \forall \bfitg \in \Theta D (D = 1, . . . , \delta ).

For our purposes, functional space \Theta is identified as a test space and the following
trial functional space is defined:

Q =

\biggl\{ 
v \in \Theta : v(\xi , \eta , 0) = wn

k \wedge J - 1

\biggl[ 
\^\nabla v
\partial \tau v

\biggr] 
\in L2( \^\scrC ;\BbbR 3)

\biggr\} 
,

where wk is the kth component of the interpolated polynomial \bfitw n. By multiplying
the left and right sides of (3.10) by a generic test function \theta \in \Theta and by integrating
over the reference space-time cell \^\scrC , the problem reads, find \bfitq \in Q\delta such that

[\theta , \bfitq ]1  - \langle \partial \tau \theta , \bfitq \rangle +\Delta t \langle \theta ,\bfscrF \ast ( \^\nabla \bfitq )\rangle +\Delta t \langle \theta , J - T
s

\^\nabla \cdot \bfscrF \ast \ast (\bfitq , \^\nabla \bfitq )\rangle (3.11)

= \Delta t \langle \theta ,\bfitf \rangle + [\theta ,\bfitw n]0 \forall \theta \in \Theta 

with [\theta ,\bfitw n]0 =
\int 1

0

\int 1

0
\theta (\xi , \eta , 0)\bfitw n(\xi , \eta ) d\Xi . For the Galerkin solution \bfitq h and the

convective-diffusive terms \bfscrF \ast and \bfscrF \ast \ast in the reference domain, a Lagrangian polyno-
mial expansion is performed, i.e., by adopting the Einstein's notation, \bfitq h = \theta l\^\bfitq l and
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\bfscrF  \star 
h = \theta l \^\scrF  \star 

l , with  \star = \ast , \ast \ast , where \^\bfitq l = \bfitq (\^\bfitxi l) and \^\bfscrF 
 \star 

l = \bfscrF  \star | \^\bfitxi l
. Considering as the

test function the kth Lagrangian polynomial \theta k and by using the Lagrange expansion,
we rewrite (3.11) as

(3.12)
([\theta k, \theta l]1  - \langle \partial \tau \theta k, \theta l\rangle )\^\bfitq l +\Delta t\langle \theta k, \theta l\rangle \^\bfscrF 

\ast 
l +\Delta t\langle \theta k, (\xi x\partial \xi + \eta x\partial \eta )\theta l\rangle \bfscrF \ast \ast 

\xi ,l

+\Delta t\langle \theta k, (\xi y\partial \xi + \eta y\partial \eta )\theta l\rangle \bfscrF \ast \ast 
\eta ,l = \Delta t\langle \theta k,\bfitf \rangle + [\theta k,\bfitw 

n]0

for any k = 1, . . . , 27.
In the left-hand side of (3.12), we remark that the arising matrices have a sparse

pattern due to the L2-orthogonality of the Lagrangian basis (e.g., the mass matrix by
\langle \theta k, \theta l\rangle is diagonal). Matrices involving the derivatives of the map\scrM i, i.e., \langle \theta k, (\xi x\partial \xi +
\eta x\partial \eta )\theta l\rangle and \langle \theta k, (\xi y\partial \xi + \eta y\partial \eta )\theta l\rangle , cannot be explicitly computed before finding the
map itself. On the contrary, the components which do not involve the map, namely
([\theta k, \theta l]1 - \langle \partial \tau \theta k, \theta l\rangle ) and \langle \theta k, \theta l\rangle , can be precomputed once and for all before solving
problem (3.12). Equation (3.12) is nonlinear due to the convective-diffusive terms \bfscrF \ast 

and \bfscrF \ast \ast which depend on the solution qh. For this reason a fixed point problem is
solved: let r be the index of the fixed point iteration; therefore we solve qr+1

h ,

(3.13)
([\theta k, \theta l]1  - \langle \partial \tau \theta k, \theta l\rangle )\^\bfitq r+1

l +\Delta t\langle \theta k, \theta l\rangle \^\bfscrF 
\ast ,r
l +\Delta t\langle \theta k, (\xi x\partial \xi + \eta x\partial \eta )\theta l\rangle \bfscrF \ast \ast ,r

\xi ,l

+\Delta t\langle \theta k, (\xi y\partial \xi + \eta y\partial \eta )\theta l\rangle \bfscrF \ast \ast ,r
\eta ,l = \Delta t\langle \theta k,\bfitf \rangle + [\theta k,\bfitw 

n]0,

where terms of fixed point index r are computed by using the previous solution \bfitq r
h. In

our numerical tests, the fixed point iteration stops when the L2( \^\scrC )-norm of residual
of (3.13) is less than a fixed tolerance.

3.3. Recovery of the map and foreground mesh motion. In the previous
subsection, the local map\scrM i : \^\scrC \rightarrow \scrC ni has been involved for the computation of the
local weak predictor solution. Moreover, the foreground mesh of coordinates \bfitX is
moving according to the following motion equation:

(3.14)
d\bfitX 

dt
= \bfitV ,

where \bfitV = \bfitV (\bfitx , t;u) is the mesh velocity, eventually dependent on the solution.
Equation (3.14) is closed with a Cauchy condition \bfitX (0) = \bfitX 0, which is the initial
spatial configuration. Through (3.14), we recover the map\scrM i for any cell at least on
the foreground mesh. The motion equation (3.14) is solved through an isoparametric
or Lagrangian approach by locally referring it to the same reference system as done
for the local equation (3.5). This means that the spatial coordinates \bfitX are consid-
ered as functions of the reference coordinates, i.e., \bfitX (\bfitxi ), with \bfitxi \in \^\scrC . Finally, the
solution of the referred motion equation is approximated via a Lagrangian expansion
by employing the same Lagrangian basis \{ \theta k\} 27k=1 built on the tensor combination of
three Gauss--Legendre nodes in (0, 1) along any direction as previously introduced:

\bfitX h = \theta l \^\bfitX l with \^\bfitX l = \bfitX ( \^\bfitxi l). Thus, from time tn to tn+1, the motion equation
(3.14) is locally rewritten as

(3.15)
d\bfitX 

dt
= \bfitV in \scrC ni

and closed by strongly imposing that the solution\bfitX n at current time is equal to\bfitX (tn)
found at the previous physical space-time cell \scrC n - 1

i . The local motion equation (3.15)
is weaken in a similar way to the local equation (3.5) and in algebraic form it reads

(3.16) ([\theta k, \theta l]1  - \langle \partial \tau \theta k, \theta l\rangle ) \^\bfitX l = \Delta t\langle \theta k, \theta l\rangle \^\bfitV l + [\theta k, \theta l]0 \^\bfitX 
n

l
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with \^\bfitV l = \bfitV | \^\bfitxi l
. The last term [\theta k, \theta l]0 \^\bfitX 

n

l takes into account the initial given config-

uration of the space at time tn.
When the mesh is neither moving nor deforming, as for cells in the background,

the mesh velocity is thus coincident with zero, i.e., \bfitV \equiv 0. In that case, the map is
known a priori and it consists in the rescaling of the reference space-time cell \^\scrC to the
physical space-time cell \scrC ni :

(3.17)

\Biggl\{ 
x = x(\xi ) = xi - 1/2 + hx

i \xi ,

y = y(\eta ) = yi - 1/2 + hy
i \eta ,

where coordinates xi - 1/2 and yi - 1/2 and xi+1/2 and yi+1/2 define the extremes along
the x- and y-directions of the physical space-time cell \scrC ni \equiv [xi - 1/2, xi+1/2]\times [yi - 1/2,
yi+1/2]\times [tn, tn+1], and hx

i and hy
i are the lengths along x and y of the cell, respectively,

i.e., hx
i = xi+1/2  - xi - 1/2 and hy

i = yi+1/2  - yi - 1/2.
Since the mesh motion equation (3.14) is essentially solved via a sort of discontin-

uous Galerkin approach, possible numerical (and nonphysical) discontinuities could

arise. As a matter of fact, for a given vertex \=\bfitX 
n+1
k shared by a set of spatial cells

\{ \Omega n+1
i \} i\in \scrZ n+1

k
at time tn+1, there could be as many different values of the vertex,

namely \{ \=\bfitX n+1
k,i \} i\in \scrZ n+1

k
, for any map \scrM i referring to the cell \scrC ni to which \Omega n+1

i be-

longs. The set \scrZ n+1
k collects the index(es) of the cells sharing the vertex \=\bfitX 

n+1
k . The

cardinality Nk of set \{ \Omega n+1
i \} i\in \scrZ n+1

k
, coinciding with the cardinality of the indexes

set \scrZ n+1
k , depends on the position of the vertex \=\bfitX 

n+1
k on the foreground mesh: it is

either 1 or 2 if the vertex is on the boundary of the mesh; otherwise it is 4. For this
reason we consider a weighted average value for the shared vertex in order to tackle
the possible arising discontinuities. As suggested in [6], we first consider a weighted

velocity \=\bfitV 
n+1
k corresponding to the vertex \=\bfitX 

n+1
k ,

(3.18) \=\bfitV 
n+1
k =

1

Nk

\sum 
i\in \scrZ n+1

k

\=\bfitV 
n+1
k,i with \=\bfitV 

n+1
k,i =

\int 1

0

\theta l(\xi 
\ast , \eta \ast , \tau ) d\tau \^\bfitV l,i,

where coordinates (\xi \ast , \eta \ast ) depend on the position of the coordinate \=\bfitX 
n+1
k in the cell

\Omega n+1
i ; it can assume four values: (0, 0), (1, 0), (1, 1), and (0, 1). Once (3.16) is solved,

the just found coordinates \{ \^\bfitX l\} 27l=1 are used for computing the velocity components
\^\bfitV l,i and, thus, the weighted velocities \=\bfitV 

n+1
k in (3.18). Finally, the coordinates \=\bfitX 

n+1
k

at time tn+1 are

(3.19) \=\bfitX 
n+1
k = \=\bfitX 

n
k +\Delta t \=\bfitV 

n+1
k .

We refer the reader to [11] for another definition of the weighted vertex velocities \=\bfitV 
n+1
k

in (3.18) where the Voronoi neighborhood parameters of any vertex are exploited.
In Algorithm 3.1 we resume the salient stages of the prediction step.

3.4. Correction stage: The finite volume scheme over the space-time
cell. Once the local predictor solution q\bfitq h is computed in each space-time cells \scrC ni , we
can perform the correction stage. First, we rewrite the convective-diffusive equation
(1.1) in divergence form. Let \nabla \bfitx ,t = [\nabla , \partial t]T be the space-time differential operator
and let \bfitU = [\bfitF (\bfitu ,\nabla \bfitu u),\bfitu ]T be the space-time solution; thus problem (1.1) can be
rewritten as

(3.20) \nabla \bfitx ,t \cdot \bfitU = \bfitf in \Omega (t)\times [0, T ].
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Algorithm 3.1 Prediction step

1: Compute the foreground mesh motion (3.19) from the motion equation (3.14) and
through the weighted velocity (3.18);

2: for i = 1, . . . , N do
3: Find the map\scrM i for the space-time cell \scrC ni ;
4: Compute the Jacobian matrix J associated to\scrM i;
5: Compute J - 1 and take the submatrix J - 1

s to the spatial coordinates defined
in (3.9);

6: Update the convective-diffusive terms \scrF \ast and \bfscrF \ast \ast in the reference domain;
7: Evolve the local predictor solution through (3.12);

We want to find a finite volume solution for the above equation, where the finite
volume is the space-time cell \scrC ni , whose boundary reads

(3.21) \partial \scrC ni = \Omega n
i \cup \Omega n+1

i \cup 
4\bigcup 

j=1

\Gamma n
ij ,

where the boundaries \Gamma n
ij , j = 1, . . . , 4, are the space-time boundaries of \scrC ni linking

any edge of \Omega n
i at time tn to any edge of \Omega n+1

i at time tn+1. By integrating (3.20)
over \scrC ni and by applying the divergence theorem to the left side, we obtain

(3.22)

\int 
\partial \scrC n

i

\bfitU \cdot \bfitn \bfitx ,t d\Gamma =

\int 
\scrC n
i

\bfitf d\scrC 

with \bfitn \bfitx ,t being the normal unit vector to the boundary \partial \scrC ni of the cell. Let \bfitU n
i be

the spatial average of the solution u of (1.1) over the spatial cell \Omega n
i and located on

its center, i.e.,

(3.23) \bfitU n
i =

1

| \Omega n
i | 

\int 
\Omega n

i

\bfitu (x, y, tn) dx dy,

where | \Omega n
i | is the measure of the spatial cell \Omega n

i . Though (3.21) and (3.23), equation
(3.22) explicitly is

(3.24)  - | \Omega n
i | \bfitU 

n
i + | \Omega n+1

i | \bfitU n+1
i +

4\sum 
j=1

\int 
\Gamma n
ij

\bfitU \cdot \bfitn \bfitx ,t d\Gamma =

\int 
\scrC n
i

\bfitf d\scrC ,

where the unknown is the average solution \bfitU n+1
i at time tn+1, while the last term of

the left-hand side is the space-time flux along the space-time sides
\bigcup 4

j=1 \Gamma 
n
ij . Scheme

(3.24) is the finite volume scheme; we remark that it is still exact. In order to solve
(3.24), we need to approximate the integral function of the space-time flux. Among
the several methods proposed in the literature (such as in [11, 12, 13, 33, 17]), we here
present an LLF approach:

(3.25) [\bfitU \cdot \bfitn \bfitx ,t]\Gamma n
ij
\approx \Phi (\bfitq +

j , \bfitq 
 - 
j ) =

1

2
(\bfitU +

j +\bfitU  - 
j ) \cdot \bfitn \bfitx ,t  - 

s

2
(\bfitq +

j  - \bfitq  - 
j ),

where \bfitU +
j = \bfitU (\bfitq +

j ) and \bfitU  - 
j = \bfitU (\bfitq  - 

j ) are the space-time solution of (3.20) computed

by solutions \bfitq +
j and \bfitq  - 

j , which represent the local predictor solutions outside and
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inside the cell, respectively, with respect to the space-time side \Gamma n
ij . The term s is the

stabilization coefficient. Equation (3.24) with the flux approximation (3.25) closes the
correction stage of the ADER method. At the end of this stage, a solution un+1

i is
found over any cell \Omega n+1

i . Since the predictor solution over space-time cells \scrC n+1
i needs

to be evaluated over the Gauss nodes, a second order local polynomial interpolation
is performed as explained in section 3.1.

For the computation of the integrals along the space-time manifolds \Gamma n
ij , we still

use the previously computed map \scrM i. As a matter of fact, for a generic function
g : \scrC ni \rightarrow \BbbR it holds that\int 

\Gamma n
ij

g(\bfitx ) d\Gamma =

\int 
\^\Gamma j

g(\bfitx (\bfitxi ))| Cof(J)\^\bfitn j | d\^\Gamma ,

where \^\Gamma j is the jth lateral side of the reference cubic domain \^\scrC of unit outer normal

\^\bfitn j , \Gamma 
n
ij =\scrM i(\^\Gamma j), and Cof(J) is the cofactor matrix of the Jacobian tensor J of the

map.
Concerning the time step \Delta t, due to the combination of the weak predictor solu-

tion by problem (3.11) and the consequent plug of this solution in the finite volume
scheme (3.24) trough the LLF flux (3.25), a classical stability analysis is not evident.
We assumed the time step to be

(3.26) \Delta t = CFL
h

max\{ sup\Omega \times [0,T ] | ax| , sup\Omega \times [0,T ] | ay| \} 
,

where h is the smallest characteristic length among all cells (both of background and
foreground meshes) along the whole temporal window [0, T ], i.e., h = mini,n h

n
i , with

hn
i the characteristic length of spatial cell \Omega n

i at discrete time tn. Coefficient CFL in
(3.26) is the Courant--Friedrichs--Lewy number. In this paper, the CFL coefficient is
experimentally sought by conducting an empirical analysis in section 5.2.

3.5. Dynamics of the overlapping zone. During the simulation, the fore-
ground mesh moves and, consequently, the background mesh changes its configura-
tion in the zone of the overlapping as well as in the hole. Let \Omega i(t) be a background
cell in a neighborhood of the overlapping. From times tn to tn+1, there are three
possibilities:

1. Cell \Omega i(t) is present at time tn and it disappears at time tn+1 because the
hole completely covers it.

2. Cell \Omega i(t) is not present at time tn but it appears at time tn+1 because the
hole gets away.

3. The overlapping zone does not drastically change its configuration with re-
spect to cell \Omega i(t), thus the cell is present at time tn and it still continues to
be present at time tn+1.

The third case is trivial. For the first case, the predictor solution is executed in order
to compute the fluxes of the neighboring cells even though the correction stage is
not performed. For the second case, information un

i is missing and it is necessary
for computing un+1

i . For this reason, let N1 be the total number of background cells
(those in the hole included). Consequently i \leq N1. By recalling that the order of
foreground cells starts from N1 + 1, we look for an index j > N1 such that

(3.27) \bfitx j = arg min
k>N1

\| \bfitx i  - \bfitx k\| ,
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where \bfitx \mu is the center of mass of cell \Omega n
\mu , for \mu = i, j, k. Then, a local polynomial

interpolation \bfitw n
j on the stencil \scrS j centered on cell \Omega n

j of the foreground mesh is
computed as previously explained in section 3.1. In particular, since \Omega n

j is chosen
to be the closest foreground cell to background cell \Omega n

i through (3.27), a third order
polynomial approximation of solution \bfitu n on \bfitx i is ensured by imposing \bfitu n

i = \bfitw n
j (\bfitx i).

Finally the ADER prediction-correction is performed as usual.

4. The stabilization of the scheme. For the definition of the coefficient s in
(3.25), there are different approaches leading to different definitions. Here we analyze
two stabilization coefficients, i.e., the advective-diffusive term sAD and the advective
term sA. For the sake of clarity and to lighten the notation, we consider a 2D scalar
solution in this section (i.e., d = 2 and \delta = 1).

4.1. The local advective-diffusive stabilization term. For the definition of
the coefficient sAD in (3.25), we study a relaxed hyperbolic form of the parabolic
equation (3.20). Let us consider the following relaxation by Cattaneo (we refer to [34]
and its references for further details): let 0 < \varepsilon \ll 1 be a relaxed time and consider
variables v and w in \Omega \times [0, T ] such that

(4.1) \partial tv =
1

\varepsilon 
(\partial xu - v); \partial tw =

1

\varepsilon 
(\partial yu - w).

Relations (4.1) define the relaxations in the sense that \partial xu\rightarrow v and \partial yu\rightarrow w in the
limit of a vanishing \varepsilon . Since the flux has to be computed along the manifold \Gamma n

ij in
the space-time continuum, let us consider solution u and all its first derivatives as
stationary solutions with respect to a pseudotime t \in \BbbR +. Thus, let u(t;x, y, t) =
[u, v, w]T be the formal definition of the relaxed hyperbolic system with respect to
pseudotime t. It holds that \partial tu = 0. The conservative form problem (3.20) in quasi-
linear form is

(4.2) \partial tu+ \partial x(Au) + \partial y(Bu) + \partial t(Cu) = f in \BbbR + \times \Omega (t)\times [0, T ],

where A, B, and C are 3 \times 3 matrices (eventually involving the solution u among
their components if the original problem is nonlinear) and the force term f = [f, - v/\varepsilon ,
 - w/\varepsilon ]T . In particular, A and B always depend on the relaxation time \varepsilon and they
are defined by the convection-diffusion term \bfscrF (u,\nabla u) and C is always the identity
matrix if the Cattaneo's relaxation (4.1) is employed. In order to study the differen-
tial operator in (4.2), let us consider a vanishing force term, i.e., f \equiv 0. The presence
of the pseudotime t in (4.2) helps in treating the real time variable t as any other
spatial variable x and y. When the force term in (4.2) is null, the problem is hyper-
bolic if the spectrum of matrix \scrA = nxA + nyB + ntC is real for any choice of real
values nx, ny, and nt. If the hyperbolicity is ensured, the relaxed hyperbolic system
has a planar wave solution propagating in the space-time continuum \Omega \times [0, T ]. In
particular, if \bfitn \bfitx ,t = [nx, ny, nt]

T is a particular direction in the space-time contin-
uum, the eigenvalues of \scrA define the speeds of propagation of the solution along the
principal directions defined by the eigenvectors of \scrA . For this reason, in the perspec-
tive of an upwind stabilization, the local stabilization term sAD in (3.25) is equal
to the maximum speed of propagation of the wave, as it happens for the LLF flux
approximation for a generic hyperbolic problem of a propagating wave in the space
continuum.

Here we detail the previous analysis for the convection-diffusion problem with
the convective field \bfita = [ax, ay]

T and the diffusive term \nu depending on space \bfitx and
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time t and eventually the solution u itself if a nonlinearity leads the dynamics of the
equation. In this case, the matrices of the quasi-linear problem (4.2) read

A =

\left[  ax  - \nu 0
 - 1/\varepsilon 0 0
0 0 0

\right]  , B =

\left[  ay 0  - \nu 
0 0 0
 - 1/\varepsilon 0 0

\right]  , C =

\left[  1 0 0
0 1 0
0 0 1

\right]  .

Consequently, the spectrum \rho (\scrA ) of matrix \scrA is

(4.3) \rho (\scrA ) =

\Biggl\{ 
nt;

1

2

\Biggl[ 
\sigma \pm 

\sqrt{} \biggl( 
a2x +

4\nu 

\varepsilon 

\biggr) 
n2
x + 2axaynxny +

\biggl( 
a2y +

4\nu 

\varepsilon 

\biggr) 
n2
y

\Biggr] \Biggr\} 
,

where \sigma = \bfita \cdot \bfitn +2nt and \bfitn = [nx, ny]
T . The following proposition finally defines the

advective-diffusive stabilization parameter.

Proposition 4.1. For the advection-diffusion problem (1.1) with the convective
field \bfita = [ax, ay]

T and the diffusive term \nu , the advection-diffusion stabilization co-
efficient sAD is chosen to be the absolute value of the maximum of spectrum (4.3),
i.e.,

(4.4) sAD = max | \rho (\scrA )| = 1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \sigma +

\sqrt{} \biggl( 
a2x +

4\nu 

\varepsilon 

\biggr) 
n2
x + 2axaynxny +

\biggl( 
a2y +

4\nu 

\varepsilon 

\biggr) 
n2
y

\bigm| \bigm| \bigm| \bigm| \bigm| .
Since the spectrum \rho (\scrA ) \subset \BbbR for any nonnegative \varepsilon , it yields the relaxed system

(4.2) is always hyperbolic for any nonnegative \varepsilon .

4.2. The choice of the relaxation time. For the definition of the advective-
diffusive stabilization term sAD, we considered the relaxed hyperbolic system (4.2)
deriving from the parabolic problem (3.20) through a relaxation time \varepsilon . If we were to
solve the relaxed problem instead of the original one, the approximate solution would
differ from the exact solution of two errors that are added together: the numerical
error (typical of the scheme) and a relaxation error. For a linear problem, these
errors have been investigated by Toro and Montecinos in [34]. The error | u\mathrm{h}\mathrm{i}\mathrm{p}  - u| 
between the hyperbolized solution u\mathrm{h}\mathrm{i}\mathrm{p} and the original solution u is \scrO (\varepsilon ) [24]. Thus,
if u\mathrm{h}\mathrm{i}\mathrm{p},h is a numerical approximation of the exact relaxation solution u\mathrm{h}\mathrm{i}\mathrm{p}, the error
| u\mathrm{h}\mathrm{i}\mathrm{p},h  - u\mathrm{h}\mathrm{i}\mathrm{p}| is \scrO (hp

0), with p the order of the method (i.e., p = 2 in this paper) and
h0 the maximum characteristic length of cells \Omega i(t)'s. However, the goal is to choose
a relaxation time \varepsilon such that the relaxation error is always dominated by or, at least,
comparable to the numerical error, i.e., \scrO (\varepsilon ) \lessapprox \scrO (hp

0). The following theoretical
result can help in fulfilling our task.

Proposition 4.2. The solution u of the original parabolic problem (3.20) is ap-
proximated by a relaxed solution uhip solving the relaxed problem (4.2) with accuracy
p for all relaxation time \varepsilon and characteristic length cell h0 satisfying

(4.5) Cp
\varepsilon 

hp
0

= \scrO (1)

with

Cp =
1 - 2 - 

1
2

2p - 
1
2  - 1

.

For the proof of Proposition 4.2, we refer the reader to section 2.4.1 of [23]. As a
consequence, there is the following corollary.
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Proposition 4.3. For a given mesh whose characteristic length is h0 and a nu-
merical method of order p for solving the hyperbolized problem (4.2) derived by the
original parabolic problem (3.20), the optimal relaxation time \varepsilon p is

(4.6) \varepsilon p =
\scrO (1)hp

0

Cp
.

We remark that if a relaxation time \varepsilon is chosen to be less than or equal to \varepsilon p, the
numerical error dominates the relaxation error; on the contrary, if a relaxation time
\varepsilon is chosen to be greater than the optimal value, the relaxation error dominates the
numerical error. For this reason, in our simulation relaxation time \varepsilon = \varepsilon 2/2 is chosen.

4.3. The local advective stabilization term. In order to recover a stabi-
lization term sA by only considering the first order operator involved in the whole
differential operator of the original problem, we can treat the equation to stabilize
as a pure hyperbolic (namely just advective) problem. For this reason, the advective
stabilization term sA coincides with the maximum eigenvalue of the ALE Jacobian
matrix in a spatial normal direction by excluding the diffusive component which acts
on the diffusion from the advective-diffusive term \bfitF (u,\nabla u) [11]. This matrix reads

(4.7) A\bfitV 
\~\bfitn =

\sqrt{} 
n2
x + n2

y

\biggl[ 
\partial \bfitF 

\partial u
\~\bfitn  - \bfitV \cdot \~\bfitn I

\biggr] 
,

where I is the identity tensor whose dimension is that one of the image space of the
solution u and the unit vector \~\bfitn is the normalized projection of the space-time unit
vector \bfitn \bfitx ,t along the spatial directions given by vector [nx, ny]

T , i.e.,

\~\bfitn =
[nx, ny]

T\sqrt{} 
n2
x + n2

y

.

By recalling that the recovered map\scrM i is defined over \^\scrC with image in \scrC i, the space-
time manifold \Gamma \bfitn 

ij , j = 1, . . . , 4, of the space-time cell \scrC i can be described by only
two of the three reference space-time variables (\xi , \eta , \tau ), i.e., by either couple (\xi , \tau ),
with \eta = \=\eta , or couple (\eta , \tau ), with \xi = \=\xi ; with \=\xi and \=\eta alternatively equal to 0 or 1,
depending on the specific jth space-time manifold \Gamma \bfitn 

ij . Let \chi be the free variable (e.g.,
\chi = \xi ) and \=\kappa be the constrained variable (e.g., \=\kappa = \=\eta ) for the specific manifold \Gamma \bfitn 

ij .
Therefore, for a specific point \~\bfitx over \Gamma \bfitn 

ij it is possible to distinguish two directional
vectors provided by the map\scrM i,

\bfitr \chi =

\left[  x\chi 

y\chi 
0

\right]  
\=\kappa 

and \bfitr \tau =

\left[  x\tau 

y\tau 
\Delta t

\right]  
\=\kappa 

.

The definitions of the directional vectors \bfitr \chi and \bfitr \tau allow us to explicitly write the
physical normal vector \bfitn \bfitx ,t on \~\bfitx as

\bfitn \bfitx ,t =
\bfitr \chi \wedge \bfitr \tau 
| \bfitr \chi \wedge \bfitr \tau | 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\=\kappa 

=
[\Delta t y\chi ,  - \Delta t x\chi , d\chi \tau ]

T\sqrt{} 
\Delta t2 y2\chi +\Delta t2 x2

\chi + d2\chi \tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\=\kappa 

with d\chi \tau = x\chi y\tau  - x\tau y\chi . From now on we will omit the constraint variable \=\kappa . It is
now possible to write the unit vector \~\bfitn along the spatial directions and the velocity
of the point as
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\~\bfitn =
[y\chi , - x\chi ]

T\sqrt{} 
y2\chi + x2

\chi 

and \bfitV =
d\~\bfitx 

dt
=

[x\tau , y\tau ]
T

\Delta t
.

Consequently it holds that

(4.8) \bfitV \cdot \~\bfitn =
 - d\chi \tau 

\Delta t
\sqrt{} 

y2\chi + x2
\chi 

=
 - nt\sqrt{} 
n2
x + n2

y

.

In the case of a linear problem the advective stabilization term reads

(4.9) sA = | axnx + ayny + nt| .

The next proposition, through (4.8), allows us to connect the advective-diffusive pa-
rameter sAD with the advective parameter sA in the limit of a vanishing diffusion
parameter \nu .

Proposition 4.4. For linear problem (1.1), let the diffusion parameter \nu go to
zero; therefore the following limit holds:

(4.10) lim
\nu \rightarrow 0

sAD =
1

2
| \sigma + axnx + ayny| = | axnx + ayny + nt| = sA.

The above proposition confirms that, in the limit of small diffusion in the dynamics
of linear problem (1.1), the two stabilization techniques coincide.

5. Numerical results. In this section we are going to present some numerical
test cases in order to analyze the method.

Table 1 synthetically sums up the test cases that will be used for the different
analyses. In particular, test1 and test2 (in lowercase letters) are the 1D tests and
TEST1 and TEST2 (in capital letters) are the 2D test cases.

In the 1D tests, the foreground mesh is put in the middle between the other two
meshes composing the background mesh, and it deforms according to the deformation
laws specified in the last row of Table 1. In the following, for test1 we are not
presenting a figure but only the rate of convergence. In Figure 5 three instants for test2
simulation are showed; in particular, the red circle markers define the nodes of the
moving foreground mesh which is in the middle between the other two meshes (in the
background) whose nodes are marked by blue dots and x-symbols. The background
meshes are always uniform while the foreground mesh is allowed to be displaced and
deformed. The solution of test2 is flat toward the boundaries of the computational
domain and develops a moving front affected by a large spatial derivative; for this
reason, the foreground mesh is set in order to follow the front. Finally we remark
that if h is the characteristic length of the cells in the background mesh, at the initial
time t = 0 the foreground mesh is uniform with a characteristic length equal to h/2
in test1 and h/4 for test2.

In TEST1, the foreground mesh is subjected to a deformation and rotation around
its center of mass. We remark that in this case the deformation velocity depends on
the solution; in TEST2, the hyperbolic tangent in the exact solution describes a com-
posed Gaussian bell whose maximum is originally located in the position \bfitx = ( - 1, 0)
and, after a time T = \pi , it computes a counterclockwise half rotation up to position
\bfitx = (1, 0) along the circumference of unit radius and centered in the origin of the axes.
Due to the particular dynamics of the solution, we set a foreground mesh following the
movement of the Gaussian bell. At the initial time, the foreground and background
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Fig. 5. Three time instants for the 1D test case test2. The circle markers define the nodes of
the moving foreground mesh. The remaining dot and x markers are the nodes of the two background
meshes.

meshes in both 2D cases consist of squared cells whose sides have a length equal to h.
For all numerical tests, the time step \Delta t is set accordingly to (3.26) with CFL coef-
ficient equal to 0.4. The reason for this value will be better explained in section 5.2,
where an empirical stability analysis is conducted.

Without reporting numerical evidence, we checked that the scheme is free-stream
preserving, i.e., it exactly solves a constant but nonzero solution.
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5.1. Order of convergence. In this section we have a double goal. On one
hand we want to numerically prove that the presented method is second order when
an advective-diffusive LLF stabilization sAD is employed. On the other hand, we
want to compare this stabilization term with the local advective stabilization flux sA.
The study of the second order convergence is conducted on all test cases of Table 1.
Finally, on the two mentioned 2D test cases the comparison of the performances for
the flux approximations is carried out.

For quantifying the convergence rate, we considered the L\infty - and L2-norms of the
mismatch between the exact solution and the numerical solution at final time t = T .
The errors are defined and approximated as

L\infty -err = \| u - uex\| L\infty (\Omega )(5.1)

= ess sup
\bfitx \in \Omega 
| u(\bfitx , T ) - uex(\bfitx , T )| \approx eNL\infty = max

k=1,...,N
| uM

k  - uex(\bfitx k, T )| 

and

L2-err = \| u - uex\| L2(\Omega ) =

\sqrt{} \int 
\Omega 

\Bigl( 
u(\bfitx , T ) - uex(\bfitx , T )

\Bigr) 2

d\Omega \approx eNL2(5.2)

=

\sqrt{}    | \Omega | \sum N
k=1

\Bigl( 
uM
k  - uex(\bfitx k, T )

\Bigr) 2

N
,

respectively, where N \approx | \Omega | h - 1/d is the number of cells such that any part of the
domain is covered by one and only one cell at time T (with h the characteristic
length of cells and d = dim(\Omega )) and M is the maximum natural such that T = M\Delta t.
Approximation (5.2) is valid only in the case of cells having approximatively or exactly
the same spacing. The convergence rate reads

(5.3) Lp-rate = d
log (eN1

Lp /e
N2

Lp )

log(N2/N1)
, for p = 2,\infty ,

for two different partition settings whose number of cells is N1 and N2, respectively,
with N1 < N2. The mesh refinement is performed by reducing the spacing (kept
constant for any cell) and by preserving a layer of four cells both in the background
and the foreground for the overlapping zone.

Table 2 sums up the convergence analysis for 1D test cases. In the last two
columns are the rates of convergence of the errors for both L\infty - and L2-errors. From
the analysis, the second order of the method is confirmed.

In Table 3 we report the L\infty - and L2-errors with their respective rate of con-
vergence with respect to a local advective-diffusive (AD, white cells) and advective
(A, gray cells) stabilization. We first remark that, for both cases, the errors relative
to AD stabilization are slightly smaller with respect to the same errors with an A
stabilization. The rate of convergence of the errors for an AD stabilization is at least
2. On the other hand, even though a second order of accuracy is also reached by em-
ploying an A stabilization, the convergence rate shows an irregular trend (especially
for TEST2). For this reason we can state that an AD flux approximation allows us
to reach a more precise solution with a monotone trend for the rate of convergence
with respect to the same solution with an A flux stabilization.
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Table 2
Convergence analysis for 1D test cases test1 and test2.

T h L\infty -err L2-err L\infty -rate L2-rate
te

st
1

0.25

2.00e-2 1.2740e-3 1.3903e-3 0 0
1.00e-2 2.5042e-4 2.9250e-4 2.37 2.79
5.00e-3 5.6957e-5 6.6934e-5 2.15 2.14
2.50e-3 1.3675e-5 1.6068e-5 2.06 2.06

te
st

2

0.5

1.00e-2 9.2733e-4 6.3960e-4 0 0
5.00e-3 1.1948e-4 1.0081e-4 2.88 2.60
2.50e-3 2.1898e-5 1.6359e-5 2.49 2.67
1.25e-3 5.6504e-6 2.8547e-6 1.96 2.44

Table 3
Convergence analysis for 2D test cases TEST1 and TEST2. Column labeled h reports the

smallest characteristic length among all cells.

T h L\infty -err L2-err L\infty -rate L2-rate

AD A AD A AD A AD A

3.00e-1 1.9012e-2 2.1887e-2 4.6211e-3 9.1724e-3 0 0 0 0
1.50e-1 4.3829e-3 5.8280e-3 1.0854e-3 2.4464e-3 2.28 2.06 2.25 2.05
7.50e-2 9.5837e-4 1.2096e-3 2.1323e-4 4.8789e-4 2.25 2.32 2.41 2.38

T
E

S
T

1

1

3.75e-2 3.0646e-4 2.7571e-4 2.9265e-5 5.5269e-5 1.95 2.16 2.65 3.18
3.00e-1 6.5375e-2 6.5375e-2 1.0682e-2 1.0682e-2 0 0 0 0
2.25e-1 3.1934e-2 3.1598e-2 5.5980e-3 1.0043e-2 2.66 2.70 2.40 0.23
1.50e-1 1.1276e-2 1.1276e-2 2.0116e-3 2.0116e-3 2.71 2.70 2.66 4.18
1.13e-1 5.2093e-3 8.8807e-3 9.3905e-4 2.2073e-3 2.78 0.86 2.74 -0.33T

E
S

T
2

\pi 

7.50e-2 2.4154e-3 3.6814e-3 3.9534e-4 8.6362e-4 1.94 2.22 2.19 2.37

5.2. Empirical analysis of stability condition. As already mentioned at the
end of section 3.4, the presence of a weak solution, found in the prediction step of the
presented method and successively plugged into the flux of the finite volume scheme
in the correction stage, makes a classical stability analysis difficult to perform. For
this reason, we performed an empirical stability analysis by assuming that the right
time step \Delta t allowing a stable computation is defined as in (3.26).

On a given problem, once both background and foreground meshes are set, we
considered a time step \Delta t starting from a CFL number equal to 0.1 and, by increasing
this value of 0.05 each time, we look for the largest stable CFL. In particular, this
process is executed on the same problem considering an approximated LLF flux em-
ploying once an advective-diffusive stabilization term sAD and then with an advective
stabilization term sA.

The analysis is conducted on the 2D test cases presented in Table 1. In Figure 6
there are three time instants of both test cases.

Table 4 gives the maximum CFL numbers and related maximum time steps \Delta t
such that the method is stable. The time step \Delta t is computed by formula (3.26).
By comparing the performances of a local advective (A) stabilization term against
the same ones using a local advective-diffusive (AD) stabilization term, it is evident
that an advective LLF flux always needs a smaller CFL with respect to an advective-
diffusive LLF flux in order to stabilize the routine.

5.3. Relationship between the convective field and the foreground mesh
velocity. From the theoretical explanation of the method, there does not emerge in
any way an interaction between the speed of the foreground grid \bfitV and the intrinsic
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(a) TEST1 (b) TEST2

Fig. 6. Three time instants for test cases TEST1 (a) and TEST2 (b).

Table 4
Experimental stability analysis. For both tests, the reported CFL and \Delta t consist of the max-

imum CFL number and the maximum related time step \Delta t such that the method is stable. Labels
A and AD underline the usage of an advective and an advective-diffusive stabilization term for the
LLF flux, respectively. The first column reports the space steps h used for the different simulations.

TEST1 TEST2

h CFL \Delta t CFL \Delta t

A AD A AD A AD A AD

3.00e-1 0.55 0.95 2.06e-1 3.56e-1 0.75 0.95 2.81e-1 3.56e-1
1.50e-1 0.75 1.15 1.41e-1 2.16e-1 0.65 0.85 1.22e-1 1.59e-1
7.50e-2 0.75 0.95 7.03e-2 8.91e-2 0.55 0.75 5.16e-2 7.03e-2

advective field \bfita of the problem. In other words, there does not seem to be a limitation
of the velocity of the mesh that is displaced and deformed in terms of stability of the
method. The unique limitation of the mesh speed (see section 3.5) is due to the CFL
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condition with respect to the dimension of the single cell. In order to allow the code
to perform the automatic information transmission, the mesh speed is such that it
does not allow a given fringe cell \Omega n

i in the foreground mesh to migrate beyond the
boundaries of the stencil \scrS i centered on the cell itself in any time interval from tn to
tn+1. As a matter of fact, if this process is not ensured, those newborn cells belonging
to the background mesh at time tn+1 could not be able to recover the information
from the polynomial interpolation. Consequently, the algorithm would incur a loss of
information.

In this subsection we test a numerical case that the stability is only given by the
relative advective speed \bfita  - \bfitV and the mesh velocity \bfitV does not affect the stability of
the method in other ways. In particular, on the same linear test case, we will consider
different possible movements of the foreground mesh by measuring, at final time t = T ,
the L\infty - and L2-errors of the mismatch between the exact and the numerical solution.
The tested case is named TEST3 and it is summed up in Table 5 (top).

The foreground mesh is allowed either not to move or to rigidly move in the
parallel direction with respect to the abscissae axis. In particular, we consider three
possibilities of movements, P1, P2, and P3, reported and explained in Table 5 (bot-
tom). We remark that test P1 corresponds to a test case with a unique block mesh
due to the position and the uniformity of the foreground mesh with respect to the
background mesh. For this reason, tests P2 and P3 are compared with P1. Figure
7 shows both the numerical solutions and the associated pointwise absolute values of
the difference between the exact and the numerical solution for the final time T = 2
for the configurations listed above. In particular, the configuration of the foreground
mesh in Figure 7(a) (left) corresponds to the initial mesh configuration for tests P2
and P3 too. By visualizing the different plots of the errors, it is evident the movement
of the foreground mesh introduces an error. As a matter of fact the errors of P2 and
P3 are equal neither to each other nor to the errors of P1. The quantitative differences

Table 5
On the top, features of TEST3 are reported. On the bottom are the three considered movements

of the foreground mesh.

TEST3

\Omega (0, 1) \times (0, 5)
Diffusion 2e-3
Advection [1, 0]T

uex
 - tanh(2(x - t)2 + 5(y  - 1)2)+

+e - t(5x - x2)(2y  - y2) + 1
B.C. Dirichlet: u| \partial \Omega \equiv 0

I.C.
 - tanh(2x2 + 5(y  - 1)2)

+(5x - x2)(2y  - y2) + 1
T 2

fg mesh [0.8, 1.2]2

\bfitV P1, P2, P3

\bfitV 

P1 The foreground mesh is not moving for the whole period of the simulation.

P2 The foreground has a constant velocity equal to the advective velocity for any time.

P3 For half of the time the mesh moves with double the speed compared to the advective field
and for the remaining half of the time the mesh moves with the same speed in modulus but
in the opposite direction compared to the advective field.
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(a) P1

(b) P2

(c) P3

Fig. 7. The numerical solutions, on the left, at final time t = 2 of the three possibilities P1,
P2, and P3 of foreground mesh movements for TEST3. On the right are the associated pointwise
errors of the mismatch between the exact solution and the numerical solution.

Table 6
Errors for TEST3. The errors refer to a characteristic length h equal to the cell of 2e-2 and a

time t = T = 2.

L\infty -err L2-err

P1 2.1554e-2 6.8500e-3
P2 2.1554e-2 4.8809e-3
P3 4.8809e-2 1.0864e-2

among the different cases are reported in Table 6. Concerning test P2, the L\infty -error is
equal to the one of P1, even though the L2-error is the double. This distance between
a steady and moving foreground mesh becomes slightly more evident at increasing
of the mesh speed, as the last line of Table 6 shows. In any case, all the errors are
comparable and this confirms that there is no relation between advective field and
mesh velocity in terms of stability. The mesh velocity seems to affect the numerical
solution only on the precision.

We conclude this subsection by analyzing the loss of information given by a very
strong speed of the foreground mesh on the same test case. The foreground mesh is
still located in the subset [0.8, 1.2]2 at the initial time and moves rightward with a
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Fig. 8. Comparison between the numerical (left) and exact (right) solution of TEST3 at time
t = 0.84 for a moving foreground mesh traveling with a speed generating a loss of information.

speed equal to 4. This velocity, with the considered time step \Delta t, allows the cells on
the left side of the foreground mesh to overflow from the borders of their stencil from
times tn to tn+1. In Figure 8 there is a comparison between the recovered numerical
solution and the exact solution for t = 0.84 (which corresponds to that time when the
right side of the moving mesh is fully aligned to the right side of the channel). There
is no relation between the two solutions because the speed of the foreground mesh is
so fast that it does not allow the algorithm to assign the correct information about
the background cells that arise in the wake of the foreground mesh itself.

5.4. Further topics. We conclude this section by presenting three test cases
that show the potentiality of the method. First, a nonlinear advection-diffusion sys-
tem is solved; successively a multimesh setting of grids is considered for the already
described TEST2 (see Table 1); finally, we consider a test case with a complex domain
in which the foreground mesh is employed in order to adapt its shape to the shape of
the domain.

5.4.1. Nonlinear system. Let \Omega = [ - \pi , \pi ]2 and T = 0.5 be the computational
domain and the final time, respectively. Thus the problem is, find \bfitu : \Omega \times [0, T ]\rightarrow \BbbR 2

such that

(5.4)

\left\{     
\partial t\bfitu +\nabla \cdot (\bfitu \bfitu T ) = \nu \Delta \bfitu + \bfitf in \Omega \times [0, T ],

\bfitu \equiv \bfitu ex on \partial \Omega \times [0, T ]

\bfitu (\bfitx , 0) = \bfitu ex(\bfitx , 0) in \Omega \times \{ 0\} ,
,

where the force term \bfitf is chosen to have the exact solution

\bfitu ex(x, y, t) = e - t

\biggl[ 
cos(x) sin(y)
 - sin(x) cos(y)

\biggr] 
.

In problem (5.4), the diffusive term \nu is equal to 5\pi \times 10 - 3 while the convective field
is represented by the solution itself, thus the PDE is nonlinear. For this problem, the
convective-diffusive component \bfitF is the matrix \bfitu \bfitu T  - \nu \nabla \bfitu . The foreground mesh is
originally located around the center of mass of the whole domain and it is allowed to
rigidly counterclockwise rotate. Figure 9 shows the two components of the numerical
solution at final time t = T .

The error and convergence analysis is conducted as for the already presented
linear test cases by comparing the performances of the flux discretization with either
local advective-diffusive or just advective stabilization term. For this reason, Table
7 reports the L\infty - and L2-errors and convergence rates by decreasing four times the
characteristic length h of the cells. As already observed for the linear tests, also in
this specific nonlinear case the errors of AD and A fluxes are similar even though an
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Fig. 9. Components of the solution of nonlinear test at time t = T = 0.5.

Table 7
Convergence analysis of the nonlinear test case. The errors refer to time t = T = 0.5.

h L\infty -err L2-err L\infty -rate L2-rate

AD A AD A AD A AD A

3.00e-1 2.3700e-2 2.01643e-2 5.2187e-3 4.9065e-3 0 0 0 0
1.50e-1 5.2138e-3 5.8552e-3 1.1061e-3 1.5086e-3 2.36 1.93 2.42 1.84
7.50e-2 2.4113e-3 2.4344e-3 2.4506e-4 5.7129e-4 1.15 1.33 1.30 1.44
3.75e-2 6.1828e-4 6.4658e-4 1.0332e-4 1.4322e-4 1.99 1.94 2.16 2.02

AD discretization is almost always more precise. Finally, we remark that both flux
approximations have a second order discretization rate, as we expected a priori.

5.4.2. Multimesh setting. The presented method can be easily extended to
more than one foreground mesh. As a matter of fact, different meshes can be set with
an independent movement and such that to exchange information with the background
grid and with the other moving foreground meshes. Due to the possibility to move,
the foreground meshes can overlap each other. Consequently, the hole will be present
in the background as well as in some foreground grids by properly applying the same
dynamics of the overlapping zone of section 3.5 to the specific intermediate foreground
mesh.

In order to compare the performance of the multimesh setting with two moving
foreground meshes, we considered the presented case TEST2 with a foreground mesh
clockwise rotating around the origin (see Table 1) by adding a second foreground
mesh. The new grid is originally located to subset [ - 0.78, - 0.18]\times [ - 0.62, - 0.02] and
horizontally moves on the right with a constant velocity \bfitV 2 = [ - 0.8, 0]T (see Figure
10). The new grid intercepts the original foreground mesh at the beginning and at
the end of the simulation. For this reason, the original foreground mesh partially
covers the new mesh by creating a new partial hole on it (see first and last rows in
Figure 10(b)). Moreover, a new hole is generated in the background. Since each
foreground mesh is independent from the others, the holes in the background can
be ether connected (if the foreground grids overlap each other) or unconnected (if
the foreground meshes are far enough apart to not overlap each other). Figure 10(a)
refers to the solution where each grid is defined by squared grids whose cells have a
characteristic length h = 7.50e - 2. The L\infty - and L2-errors with respect to the exact
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(a) (b)

Fig. 10. (a) The solution of TEST2 for three time instants with a multimesh setting composed
of two foreground meshes; (b) for the same time instants, the configuration of the background and
foreground grids.

solution are exactly the same as reported in Table 3 (last row). This means that
the new grid does not influence the performance of the method with respect to the
previous grid setting.

5.4.3. Complex domains. An important application of Chimera grids is the
possibility to use meshes fitting the particular shape of the domain (which eventually
evolves in time) by preserving a Cartesian background mesh. Here we present a test
case summed up in Table 8. For any positive time t, let the generic moving ball
formally be

B(\rho \mathrm{m}\mathrm{i}\mathrm{n}, \rho \mathrm{m}\mathrm{a}\mathrm{x}; t) =
\bigl\{ 
(x, y) \in \BbbR 2 : x = \rho cos (\theta ), y = \rho sin(\theta ) - 2t - \pi ;

with (\rho , \theta ) \in [\rho \mathrm{m}\mathrm{i}\mathrm{n}, \rho \mathrm{m}\mathrm{a}\mathrm{x}]\times [0, 2\pi ]
\bigr\} 
.

The domain is the channel of dimensions [ - \pi , \pi ]\times [ - 2\pi , 2\pi ] from which the moving
circle B(0, 0.5; t) of radius equal to 0.5 is subtracted at any time t \in [0, T ]. The
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Table 8
Summary scheme of TEST4.

TEST4

\Omega [ - \pi , \pi ] \times [ - 2\pi , 2\pi ]/B(0, 0.5; t)
Diffusion 0.05
Advection [0, - 2]T

uex(x, y, t) exp[ - x2  - (y  - 2t - \pi )2 + 0.5](cos(t) + 1)
B.C. Dirichlet: uex(x, y, t)| \partial \Omega 
I.C. uex(x, y, 0)
T \pi /2

fg mesh B(0.5, 1.5; 0)
\bfitV [0, - 2]T

(a) (b)

Fig. 11. (a) The solution of TEST4 for the initial and final time instants; (b) for the same
time instants, the background and foreground grids setting.

circle vertically moves downward with a constant velocity. Figure 11(a) reports the
numerical solution at the initial and final time instants for the numerical test. In
Figure 11(b) there is a focus on the grid settings. For the foreground mesh, a polar
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structured grid is employed. It fits the shape of the domain and moves as the domain
evolves.

6. Conclusions. We presented a second order finite volume scheme for unsteady
advection-diffusion PDEs on an overset grid. The scheme is based on an extension of
the ADER method to advection-diffusion equations with compact data transmission
conditions from the background to the foreground meshes and vice versa. We also
introduced a new stabilization term for approximating the fluxes through an LLF
approach.

The numerical illustrations for linear and nonlinear systems show that background
and foreground moving meshes do not introduce spurious perturbation to the solution,
uniformly reaching second order accuracy in space and time. In addition, we showed
that the speed of the foreground mesh does not influence the stability of the method.
Our results also show that the new LLF stabilization speed improves the precision
and robusteness of the numerical solution and allows a less restrictive CFL condition.
Finally, it is shown that several foreground meshes, possibly overlapping and with
independent displacements, can seamlessly be employed thanks to this approach.

Future investigations will extend this integration scheme to the compressible and
incompressible Navier--Stokes equations.
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