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Abstract 

This paper presents a method to estimate precisely a forest fire front position which is often 
undetectable due to the dense smoke released by the fire. Usually, a fire front position is 
defined by a curve of constant temperature. In this study we propose to use only some 
measurements of the radiative flux obtained by sensors to estimate the fire front position. The 
inverse method developed in this paper uses both simplex and conjugate gradient methods. 
The performance of this method is then demonstrated on a forest fire test case.  

1. Introduction and Motivation 

1. Generalities 
Let us firstly motivate the study. Some models of forest fire propagation at large scale are 
reaction diffusion systems, see [1-3] for example, set on the surface of the terrain. They are 
generally deduced from the balance of energy and the balance of mass for the solid fuel and 
reduced to a 2D system, and have the following general structures: 
Balance of energy: 
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and in the zone where pyrolysis occurs, an equation modeling the kinetic of decomposition 
must be considered: 
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In these relations T , !  and !  represent the temperature, the density of wood, and the 
porosity of the vegetation, 

s
C  and 

l
C  stand for the heat capacity of the dried wood and of 

water, 
u

H  is the humidity, g
T  is the temperature of the ambient gas. 

r
M  is the radiative flux 

coming from flames, 
ev

T T
!

= is the characteristic function of the zone of evaporation. This 
model supposes that the radiative transfer is the main process of heating and corresponds to a 
case where the totality of the energy received by the fuel is used for evaporating the water 
during the process of drying. The burning zone is defined by the inequality

i
T T! , the fire 

front being defined by the equality
i

T T= . In fact the propagation of fire in the preceding 
modeling is a free boundary problem, the evaporation and the burning zones being unknown 
and parts of the problem. For the sake of simplicity let us assume that there is no humidity, 
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that is 0
u

H = . Let us enlight the dependency of the problem upon the burning zone, using a 
V.O.F. formulation [3]. Let ( )t! ,x  be the characteristic function of the burning zone, i.e. 
such that ( ) 1t! , =x  if the point x  lies in the burning zone at time t  and ( ) 0t! , =x  
elsewhere. The characteristic function, considered as a distribution, satisfies the equation, see 
[4]:  
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In relation (3) w is the normal velocity of the fire front, it is equal to:  
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We can consider now a mollifier ( )
h
m x , i.e. a function such that ( ) 0

h
m >x , 

2
( ) 1
h

R

m d =! x x  

and the function tends to a Dirac distribution when 0h! . This function can be chosen as 
smooth as desired, so that the function defined by the convolution:  
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is a regular approximation of the characteristic function ! , and can be considered as the 
“density” of the burning part. Now an approximation of the system of propagation is:  
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The velocity w is a smooth extension of the normal front velocity given by:  
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We will see in the next section the dependency of the radiative flux upon the function α. 
The system (6)-(9) is now set on the whole plane 2

R . 

2. Flame model 
Indeed the radiative process is a full 3D process because the flames develop above the 
vegetation. It is possible to assume a geometric shape of the flame and integrate the radiative 
transfer equation in order to calculate the heat flux

r
M . However the emissivity and the 

radiative properties of the flames are not well known. In the context of this paper we will 
consider only close form of the radiative heat flux as convolution integral between a Green 
function G and a rate of emitted heat calculated on the burning zone denoted f!  

    1 2( ) ( )
f
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or 
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R
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if we use the density of burning part. In expressions (10) or (11) the radiative flux appears 
clearly as a function of the burning zone. The close form expression (10) can be computed 
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assuming that the burning zone is thin, the flame is supposed to be at constant known 
temperature fT . Each flame element is supposed to be directed by a unit vector F  parallel to 
the velocity of the gas fV , the emitting point is denoted by P  and the receiving point by M , 
O  is the flame foot (cf. Figure 1).   
 

 
Figure 1. Radiation of the flame. 

The global unit vectors of the global co-ordinates system are denoted by 1 2 3( ), ,e e e , 
3
e  being 

the vertical direction. The vector n  is the unit normal to to the receiving surface of the 
vegetation at pointM . The angle between F  and the vertical is denoted by 3( )f! = ,e F . The 
flame elements are supposed to have a length fl . One can show cf [4] that the radiative heat 
flux is given by: 
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with, r  being the distance between the emitting and the receiving points rOM = w , fK  the 
absorption coefficient of the flame, (,b = F OM) , (,)q= OM PM , fq is the maximum value 
of θ, 2

Bn s= , �  is the Stefan Boltzmann constant and n is the reflective index . 
 
The velocity of the gas is the sum of the vertical velocity of the gases and of the wind  
 f g= +V v V  (13) 

 
where 

3g fgh=v e  is the vertical flame gas velocity, and V  is the wind velocity. 

3. Objective of the study 

Usually models describing forest fire at large scale like (6)-(9) are compared to measurements 
obtained in prescribed burnings, see [7], [8]. These types of fires are set on fields of several 
tenths meters sizes. They usually are instrumented using thermocouples and systems for 
recovering the fire front position. If the distribution of vegetation is homogeneous and if the 
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wind is constant the fire front is a straight line for a line ignition, its position can be obtained 
by the peaks of temperature. If the fire front is no more a straight line, other methods must be 
elaborated for determining the fire front position. Due to to the size of the terrain the use of 
thermocouples is uneasy and devices using optical remote sensing have been designed [9]. 
However the determination of the fire front position by optical methods is not so easy because 
of the size of the field in prescribed burning, of the possibility of smoke. This paper is a 
methodological paper and the question addressed here is: is it possible to determine the fire 
line position measuring the radiative flux field? The question of the technology involved in 
such radiative heat flux measurement has been considered elsewhere [10]. The method 
developed here is a method of optimal control or inverse method. We consider a discrete 
version of a functional like

2

2
cal mes

r r

R

J M M d!= "#  where the calculated radiative flux field 

cal

r
M is considered as a function of the burning zone via a flame model. In a real experiment 
the field mes

r
M should be provided by measurements, here it has been calculated by the 

considered flame model. In some way these values for the measured flux are exact as we 
don’t want here to test or validate the flame model. As mentioned before the use of model 
(12) is for minimizing the computational cost of this test but here it is a matter of choice. The 
algorithm for recovering the radiative flux is to minimize J with respect to the burning zone. 
For doing that we find an approximate solution to the problem at a first step, the method will 
be exposed at section 2.1 and then we use a steepest descent algorithm. The point is to find 
the derivative of the functional with respect to the burning zone. A virtual movement is then 
imposed to the domain and the derivative is taken along this virtual movement. This is 
exposed in section 2.2. At paragraph 3 a numerical application is given. We consider a fire 
front which is an ellipse “perturbated” by a sinus curve. We then apply the preceding strategy 
of optimization and recover quite sharply the fire front. 
 

2. The control algorithms for the determination of the fire 
front 

This section is devoted to the presentaton of the optimization algorithms which are used to 
determine the fire front position starting from some values of the radiative flux measured with 
sensors. In this study the sensors are uniformly located in space. The number of sensors is 

x y
Ns Ns Ns= ! , where 

x
Ns  and y

Ns  denote the number of rows and columns of sensors. This 
section is divided into two parts. While the first part is devoted to find an approximate 
position of the fire front (§ 1), the second part consists in improving this solution to obtain the 
real fire front position (§ 2).  

1. Determination of an approximate fire front position 

As it was just mentioned above, the objective here is only to find an approximation of the fire 
front position. After having described the objective function (§ 1), the optimization algorithm 
based on the Nelder-Mead simplex method is presented (§ 2).  

1. Definition of the first objective function 

The natural objective is to to find for each sensor a (calculated) radiative flux value that is the 
most closer to the measured radiative flux. Mathematically, the objective function could be 
written:  
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where f!  denotes the actual "calculated" burning zone, and the functions ( )cal

r i fM x ,!  take 
the form:  
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However, since the radiative flux decreases with distance and tends to zero, the contribution 
of the Ns  sensors have not the same weight in the objective function (14). Indeed, the sensors 
located near the fire front are greatly predominant versus the other ones. At this stage it is 
desirable that all the sensors have the same contribution in the objective function. Thus, to get 
rid of this problem, the objective function (14) is replaced by the new following objective 
function:  
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This objective function represents then the percentage of the error between the measured and 
the calculated radiative flux where all the sensors have the same weight even if they are 
located far away the fire front. To simplify future notations, the boundary of the burning zone 

f!  is discretized into a vector ( )1 1
, ;...; , , , 2

n

p p
x y x y R n p= ! =u u . Due to the numerical cut 

off involves in the radiative flux distribution, it has to be noticed that a sensor has however to 
be located in the radiative influence zone defined by the parameter 

r
h  to be activated. In other 

words, a sensor of index i at location
i
z  is only activated if it is located in a area defined by 

min ( , )
i r

dist h<
u

z u . If not, the sensor is shut down and the objective function takes a value 
equal to zero. The radiative influence zone around a fire front is schematically represented in 
figure 3.  
 

 
Figure 2. Description of the radiative influence zone. 
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2. Optimisation algorithm: the Nelder Mead simplex method [11 ,12] 

Due to the numerical cut off involved in the spatial distribution of the radiative flux, the 
objective function does not depend on the variations of the sensors positions 

i
x  when sensors 

are located far away from the fire front (outside the influence zone). It seems thus to be 
necessary to start an effective optimisation algorithm based on the gradient of the objective 
function from a solution which belong to the radiative influence zone as described in figure 4.   
 

 
Figure 3. Description of different candidates for fire front that could be obtained by the simplex method. 

Good candidate belong entirely to the radiative influence zone. 
To get such a solution, a genetic algorithm could be used. Genetic algorithms are often used 
in many physical disciplinary as geophysics [14], elasticity [15]. But due to the high 
numerical costs involved using this kind of algorithm we chose to use the Nelder mead 
simplex method described below.  
 
Algorithm 1. Nealder Mead simplex method   
Let f  be an objective function such that nf R R: a . A simplex is composed by 1n +  
different points with coordinates n

R!u . These points could be chosen starting from some 
knowledge of the objective function, but there are usually chosen arbitrarily.  
 

Initialisation.  
Let 0k = . A initial simplex is arbitrary built. The value of the objective function f  is 
evaluated at each point u  of the simplex. 
  

i. Reflection  
After having determined argmax ( )k k

max f=u u  we calculate the barycenter k

u  of the n  other 
points. The point k

max
u  is then reflected versus k

u  to obtain a new point k

refu  as follows:  

 (1 )k kk
ref max! != + " .u uu  (17) 

 
The point k

max
u  is then replaced by the point k

refu  to get a new simplex.  

We often impose at the reflected point k

refu  to be the symmetric of the k

max
u  versus the 

barycenter k

u , and we thus take 1! = .  
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ii. Expansion  
If ( ) ( )k k

ref if f i! ,"u u , i.e. if the value of the objective function f  evaluated at the reflection 

point if lesser than the other ones, we try to find a better point in this direction. The point k

expu  
is then determined by the relation:  
 (1 )k k k

exp ref! != + "u u u  (18) 

 
where !  is an arbitrary parameter that varies generally between 1 and 2  in function of the 
convexity of the objection function f .  
If ( ) ( )k k

exp reff f<u u , the point k

refu  is replaced by the point k

expu  in the new simplex. If not, the 

point k

refu  is preserved.  
 
iii. Contraction  

If ( ) ( )k k

ref if f i! ,"u u , i.e. if the value of the objective function f  evaluated at the reflection 
point is still greater than the other ones, a contraction is realized:  
 (1 )k k k

con ref! != + " .u u u  (19) 

 
The parameter !  is chosen arbitrary and varies generally between 0 2,  and 1.  
If ( ) ( )k k

con reff f<u u , the point k

refu  is replaced by the point k

con
u  in the new simplex. If not, a 

reduction is done to adapt the simplex to the topology of the problem under consideration.  
 
iv. Reduction  

This stage is only necessarywthen the three first stages have failed. A homothety is then 
realized around the point of the simplex k

min
u  corresponding to the minimal value of the 

objective function f . The other points of index i  are replaced to give:  

 
2

k k

k i min

i

+
= .
u u

u  (20) 

 
If ( ) ( )k k

ref maxf f>u u  a reduction is applied to the initial simplex: steps ( )ii , ( )iii  and ( )iv  are 
then ignored.  
If ( ) ( )k k

ref maxf f<u u  a reduction is applied on the reflected simplex: steps ( )iii  and ( )iv  are 
then ignored.  
This algorithm could be stopped when a fire front which belong entirely to the radiative 
influence zone is obtained (see for example figure 4(c)). But due to its rapidity, it is only 
stopped when the decrease of the objective fonction (in fact the average of the function 
evaluated on the whole simplex) between two successive iterations is smaller than a given 
parameters! .  
The choice of the values of the parameters !  and !  is very important in the resolution 
process. Indeed, they have a direct influence on the simplex topology. In order to reduce the 
risks of a convergence towards a solution that does not correspond to the minimum, a 
judicious choice is to take values around1. In this case the simplex topology is almost not 
modified and a bad convergence due the brutal contracting could be avoided.  
The optimization algorithms based on simplex method are a priori effective, at least on some 
configurations: however there is no mathematical proof of convergence towards the minimum 
of a function nf R R: a  for 2n !  (see [13] for more details).  
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2. Determination of a precise solution for the fire front 
We can consider now that we have obtained a fire front which belongs to the radiative 
influence zone (as for example the one of figure 3(c)). Starting from this solution we can 
improve the result using a more precise optimization algorithm based on the gradient of the 
objective function. The next paragraph is then devoted to derive analytically the gradient of 
the objective function.  

1. Definition of the new objective function and its gradient 

Due to the absolute value involved in the objective function (16), the gradient of the objective 
function is not diffenrentiable. We will thus introduce the new objective function:  
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2 2
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To evaluate the gradient of the objective function we can consider an infinitesimal virtual 
movement of the fire front defined by a virtual time ε and a virtual velocity ! :  
 ( )!" + .u u u#  (22) 
 
Using this movement the domain f!  is transformed in a new burning area ( )

f
!"  and the 

new objective functional writes:  
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The differential 2

f

J!

!"
 is then defined by:  
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Considering  
 ( ) ( ( ))

cal cal

rr f
MM ! !, = , ,"x x  (25) 

 
the differential of the objective function can be written:  
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2
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Using the Reynolds theorem for derivation of integral depending on time we obtain the line 
integral, n being the outward unit normal to the fire front:  
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Using equations (26) and (27) one can obtain:  
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such that the steepest descent direction is defined by:  
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Finally, if the boundary of the burning zone f!"  is discretized into a vector n

R!u , the 
gradient of the objective function with respect to the control parameters u  is:  

 2 2
1

( ( ) ( ))
2 ( ) ( ) ( ) ( )

( ( ))
j f

cal mesNs
r i r i

j i j j jmes
u i r i

M x u M x
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2. Optimisation algorithm: the conjugate gradient method 

for sake of completnenss we recall the general resolution process for non linear conjugate 
gradient methods tht we used, in algorithm 2. More details could be found in [16].  
 
Algorithm 2. Conjugate gradient method   
Given an initial set of control parameters 

0
u , evaluate 0 0( )f f= u  and 0 0( )f f=

u u
u! ! . The 

algorithm is initialized by a simple gradient step, i.e. 
0 0

f= !
u

d " , where the vector d  denotes 
the direction of descent.  
While a stopping criterium is not satisfied:  
 

i. Determination of a step 
k

!  using one favorite line search method (Wolfe, Armijo, 
etc). Calcul of a new iterate 

1k k k k
!

+
= +u u d  ;  

ii. Evaluation of a new gradient 
1kf +u

! ;  
iii. Calcul of a parameters 

1k
!

+
 using one favorite conjugate gradient method (Fletcher-

Reeves, Polack-Ribière or Hesteness-Stiefel);  
iv. Construction of a new direction of descent 

1 1 1k k k kf !
+ + +
= " +

u
d d#   

v. Incrementation : k = k+1;  
 
Usually, this process is stopped when 

2
f !<

u
" , where !  is an arbitrary small parameter.  

In this study we have chosen the Polack-Ribière method to evaluate the value of the parameter 
1k

!
+

 of step (iii):  

 1 1
1

( )T

k k k
k T

k k

f f f

f f
! + +

+

"
= .u u u

u u

# # #

# #
 (31) 

 
The determination of the step  !  involved in step (i) of the algorithm 2 is presented by 
algorithm 32.  
 
Algorithm 3. Backtracking Armijo method   
Initialisations: choice of a step 1

0
k

! >  and choice of a parameter ]0 1[! " , . 1i = .  
i. If the step i

k
!  satisfies the Armijo relation  

 1( ) ( ) ,i i

k k k k k k kf f f! " !+ # + ,u d u d$  (32)  

it is accepted and the process is stopped. If not:  
ii. We chose 1 [ (1 ) ]i i i

k k k
! "! " !+

# , $ ,  
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iii. incrementation 1i i= +  and i

k k
! != . Return to step (i).  

 
The value of the parameter !  is chosen arbitrary. Usually, it is taken to be equal to 2

10
! . The 

step (ii) of the preceding algorithm is often done by interpolation. The step obtained using this 
algorithm is called Armijo step. Note that sometimes during the optimisation process some 
steps !  that does not satisfy relation (32) are accepted, that mimics simulated annealing 
process [14,16].  

4. Some computational application 

It is experimentally shown (see [17] for example) that a fire ignited by a point in a uniform 
forest under the action of wind or slope can develop as a curve like an ellipsis with the great 
axis aligned with wind or slope direction. The experimental (measured) fire front position 
which has to be recovered using the above optimization algorithms is thus chosen to be an 
ellipsis. The great axis of the ellipsis is arbitrary choosen to be equal to 130m  while the other 
one is equal to 100m . Moreover, this fire front position is pertubated using a sinus line. So 
that the equation for the new boundary in polar co-ordinate is 
( ) ( ) sin(2 2 ) ( ) sin( )r a nr r r a n! " " # " # " "= + / = + . The fire front position under consideration, 

as well as the corresponding radiative influence zone introduced in section 1 are represented 
in figure 4. 
 

 
Figure 4. "Target" fire line (black area) and radiative influence zone (gray area). 

The fire is supposed to be contained in the close line of figure 4. The measured fluxes are then 
computed using the last relation for ( )! "  and the following parameters for the flame (table 1): 
   

1
0 2fK m!

= .  1200fT K=  

2fl m=   
Table 1. Parameters values of the flame model. 

 
As it was already mentioned, the aim of this study is to recover the fire line using control 
algorithms. Results of the simplex method and of the conjugate gradient method are presented 
in section 3.1 and 3.2 respectively. The influence of the number of sensors onto the 
effectiveness of the estimation of the fire front position is also presented in section 3 of this 
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paragraph.  

1. Results of the simplex optimization process 

The simplex optimization process described by algorithm1 is carried out. The evolution of the 
objective function value versus the number of simplex optimization iterations is presented in 
Figure 5. It is noticeable that after 400  iterations the value of the objective function passes 
from an initial value equal to 0 67,  to a value equal to 0 43, . Moreover one can see that after 
approximatively 140  iterations the simplex undergoes an effective reduction step, the value of 
the objective function passing from a value equal to 0 57,  to a value equal to 0 51, . Once the 
simplex optimization process has converged, or more precisely after 400  iterations, the fire 
front obtained is represented in figure 6. This line is entirely contained in the radiative 
influence zone also presented in the same figure. In the following, this fire line is taken as the 
initial condition in a conjugate gradient optimization process.   
 

 
Figure 5. Evolution of the objective function 

1
J  versus the number of iterations. 

 

 
Figure 6. Fire line (black area) obtained by the simplex method. The initial radiative influence zone (gray 

area) is also presented. 
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2. Results of the conjugate gradient optimization process 

The conjugate gradient optimization process described by algorithm 2 is carried out. It is 
coupled with the backtracking Armijo line search presented by algorithm 3. As it is mentioned 
above, the fire line obtained using the simplex method is used as initial condition. It is 
noticeable that the initial value of the objective function does not correspond to that obtained 
after 400  iterations of the simplex method. Indeed, we have chosen an other objective 
function in this section (see § 2). As it is shown in figure 8, after only 100  iterations of the 
conjugate gradient process (500  iterations with the simplex process), the objective function 
passes from a value equal to 40  to a value equal to 0 01, . As it can be shown in figure 7, 
some peaks corresponding to simulated annealing are visible. The fire line obtained at the end 
of the conjugate gradient optimization process is presented in figure 8. This line looks like the 
target presented in figure 4.   
 

 
Figure 7. Evolution of the objective function 

2
J  versus the number of iterations. 

 

 
Figure 8. Fire line (black area) obtained by the conjugate gradient method. The initial radiative influence 

zone (gray area) is also presented. 
The results of the simplex (steps 1) and the conjugate gradient (step 2) optimization process 
are synthesized in figure 9. While the fire line obtained by the simplex method corresponds 



 13 

approximatively to the unperturbed target fire front i.e. the ellipse, the fire line obtained by 
the conjugate gradient method recovers the perturbed target fire front.  
 

 
Figure 9. Comparison of the real fire line, the fire line obtained after the simplex process and the fire line 

obtained after the conjugate gradient process. 

3. Influence of the numbers of sensors 

This section is devoted to test the influence of the number of sensors onto the effectiveness of 
the estimation of the fire front position. To make such a test, we represent the evolution of the 
converged value of the second objective function, i.e. 

2
J , versus the number of sensors in 

figure 11. As one can show in this figure, the function 
2
J  reaches a minimum for a value of 

the number of sensors in both x  and y  directions equal to 100 . Due to the threshold reached 
by the function 

2
J  as from 100

X Y
N N= =  (see figure 10) it is not necessary to take more 

sensors. In other words, since the fire front chosen in this study measured approximatively 
200 200m m! , the optimal distance between two sensors must be equal to 2m . The number 
of sensors is then very high (10 000, ) to estimate quasi-perfectly the whole fire front position 
(see figure 9). However, as this study is really interesting to calibrate some fire propagation 
models, it is not necessary to estimate whole fire front position but only some part of it as it is 
done usually in some experiments.   
 

 



 14 

Figure 10. Evolution of the function 
2
J  versus the number of sensor. 

Indeed, we have to calibrate the propagation model onto an experimental fire line with length 
equal to 20m  which propagates during 10m  approximatively. Thus, only 50  sensors seem to 
be necessary.  

5. Conclusion 

This study is a preliminary work for the definition of a metrology of prescribed fire used for 
the validation of propagation model of forest fires. Within the context of a flame model we 
have shown how the fire front can be reconstructed, and then proposed an inverse method to 
estimate the forest fire front position from some radiative flux measurements obtained by 
“radiative sensors”. This inverse method involves two sages: the first one with the objective 
defined by (16) which has been minimized by simplex algorithm. This choice: functional 
defined by (16) and simplex algorithm has revealed to be the fatest algorithm for setting 
“acceptable fire front”. The second step is a refinement of the initial step the functional is 
defined by (21) and then a conjugate gradient methods is used for improving the result of the 
first minimiztion. This method has been tested on an arbitrary forest fire. The solution 
obtained by this inverse method converges towards the desired fire front with a relatively low 
computational cost. In a real fire there is uncertainity on the flame model, i.e. the radiative 
parameters of the flame and of the vegetation are not exactly known. The method presented 
here should be extended to Bayesian estimation and solving the complete radiative transfer 
equation. 
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