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1 Introduction

Collecting very large amounts of data by numerical simulations or experimen-
tal approaches is a common situation in almost any scientific field. There
is therefore a great need to have specific post-processing techniques able to
extract from these large quantities of high dimensional data, synthetic infor-
mation essential to understand and eventually to model the processes under
study. The Proper Orthogonal Decomposition (POD) is one of the most
powerful method of data-analysis for multivariate and non linear phenom-
ena. Essentially, POD is a linear procedure that takes a given collection of
input data and creates an orthogonal basis constituted by functions estimated
as the solutions of an integral eigenvalue problem known as a Fredholm equa-
tion (see equation 18). These eigenfunctions are by definition (equation 16)
characteristic of the most probable realizations of the input data. Moreover,
it can be shown that they are optimal in terms of the representation of energy
present within the data (see § 4.3).
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1.1 Historical background of POD

Historically, the Proper Orthogonal Decomposition was introduced in the
context of turbulence by Lumley (see Lumley, 1967) as an objective definition
of what was previously called “big eddies” by Townsend (1976) and what is
now widely known as Coherent Structures (hereafter denoted CS for simplic-
ity, see Eddy Structure Identification Course, 1996 for a detailed discussion
of CS and an overview of their detection methods). According to Yaglom (see
Lumley, 1970), the POD is a natural idea to replace the usual Fourier decom-
position in nonhomogeneous directions. The POD method was then intro-
duced for different purposes independently by several scientists, in particular,
by Kosambi (1943), Loéve (1945, 1955), Karhunen (1946), Pougachev (1953)
and Obukhov (1941, 1954). This technique is then known under a variety
of names: Karhunen-Loéve decomposition or expansion, Principal Compo-
nent Analysis (Joliffe, 1986) or Hotelling Analysis (Hotelling, 1933), Singular
Value Decomposition (Golub and Van Loan, 1990). Naturally, the Proper
Orthogonal Decomposition has been widely used in studies of turbulence
but other popular applications involve random variables (Papoulis, 1965),
image processing as for example characterization of human faces (Kirby and
Sirovich, 1990), signal analysis (Algazi and Sakrison, 1969), data compression
(Andrews et al., 1967) and recently optimal control (Ravindran, 2000a,b).

From a mathematical point of view, the Proper Orthogonal Decomposi-
tion is just a transformation which diagonalizes a given matrix A and brings
it to a canonical form A = UXVT where ¥ is a diagonal matrix (see §3
for a complete description). The mathematical content of POD is therefore
classical and is based in the spectral theory of compact, self adjoint opera-
tors (see Courant and Hilbert, 1953). Two geometric interpretations of this
mathematical procedure are discussed in §3.2.

1.2 POD and turbulent flows

A complete literature review on applications of POD to turbulence is far
beyond the scope of these lecture notes: really good reviews can be found in
Holmes et al. (1996), Delville et al. (1999) and in the appendix of Gordeyev
(1999). In the following, we remind briefly what insight can be gained from
the use of POD for eduction and modelling of the Coherent Structures ob-
served in most turbulent flows.

For our purposes, it is sufficient to have in mind (see Bonnet and Delville,
2002) that CS identification has to be done at least for two reasons: first,
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from an energetic point of view because the relative energy content of the
CS as compared with the total turbulent energy can represent from 10% (for
boundary layers, far jets), up to 20% (far wakes, plane mixing layers) or 25%
(near wakes or jets) (see Fiedler, 1998). Second, because the dynamical prop-
erties of CS play an essential role in mixing processes, drag, noise emission,
etc... For these reasons, the idea of controlling turbulent flows by means of
influencing their coherent structures seems promising (see Aubry et al., 1988;
Ukeiley et al., 2001).

Several characteristics of the Proper Orthogonal Decomposition tech-
nique, as introduced by Lumley (1967), are quite attractive in terms of CS
identification. Firstly, compared to many other classical methods used for
large scale identification (flow visualization, conditional methods, VITA, Pat-
tern Recognition Analysis), no a priori is needed for the eduction scheme. CS
are defined in an objective and unique manner as the flow realization that
possesses the largest projection onto the flow field (see equation 16). Sec-
ondly, the POD yields to an optimal set of basis functions in the sense that
no other decomposition of the same order captures an equivalent amount of
kinetic energy (§4.3). Up to now, POD is only presented as a data analysis
method which takes as input an ensemble of data, obtained from physi-
cal experiments or from detailed numerical simulations and extracts basis
functions optimal for the representativeness of the data. For illustrative pur-
poses of the ability of the Proper Orthogonal Decomposition to educe CS,
POD is applied in Cordier and Bergmann (2002) to a data-base obtained by
Large Eddy Simulation of a three-dimensional plane turbulent mixing layer.
However, the Proper Orthogonal Decomposition can be used as well as an
efficient procedure to compute low-dimensional dynamical models of the CS.
The reduced-order modelling by POD is based on projecting the govern-
ing equation of motion onto subspaces spanned by the POD basis functions
(Galerkin projection) yielding to a simple set of Ordinary Differential Equa-
tions (ODE). Finally, due to the optimality of convergence in terms of kinetic
energy of the POD functions, only a small number of POD modes are nec-
essary to correctly represent the dynamical evolution of the flow. Reduced
order modelling based on POD has recently received an increasing amount
of attention for applications to optimal control problems for partial differ-
ential equations (see Hinze, 2000; Volkwein, 2001; Fahl, 2000). In Cordier
and Bergmann (2002), a low-order model based on POD is developed for the
incompressible unsteady wake flow behind a circular cylinder at a Reynold’s
number of 200. In particular, it will be demonstrated how the control action
can be incorporated in the low-dimensional model.

This course is devoted to a rigorous presentation of the Proper Orthogonal
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Decomposition. First, the Proper Orthogonal Decomposition is introduced
in the general context of the approximation theory (§2). Since POD can be
approached as an application of the Singular Value Decomposition (SVD),
this decomposition is then presented in §3. The relationship between POD
and SVD is discussed in § 3.3. In §4, POD is now described in a statistical
setting using an averaging operation for use with turbulent flows. The dif-
ferent POD approaches is then extensively discussed in §5 where the main
differences between the classical POD (§5.3) and the snapshot POD (§5.4) are
particularly highlighted. Before to conclude in §7 by an evaluative summary
of the POD approach, §6 presents the Proper Orthogonal Decomposition as
a generalization of the classical Fourier analysis to inhomogeneous directions.

2 Proper Orthogonal Decomposition as an ap-
proximation method

In these lecture notes, we decide to follow the view of Chatterjee (2000) and
to introduce the Singular Value Decomposition (§3) and his generalization,
the Proper Orthogonal Decomposition (§4) in the general context of approx-
imation theory (see Rivlin, 1981).

Suppose we want to approximate a possibly vector-valued function u(&,t)
over some domain of interest D = € x [0; 7] as a finite sum in the variables-
separated form:

u(@ t) =y a® ()M (&) (1)

For simplicity and because it will be the case in Fluid Mechanics applica-
tions, & can be viewed as a spatial coordinate and ¢ as a temporal coordinate.

Our expectation is that this approximation becomes exact as K — +o0.
The representation (1) is clearly not unique. A classic way to solve this ap-
proximation problem is to use for the basis functions ¢*)(Z), functions given
a priori as for example Fourier series, Legendre polynomials or Chebyshev
polynomials... An alternative way could be to determine functions ¢*) (&)
intrinsic by nature of the function u(&,t) to approximate. As it will be ex-
plained in the following, this particular approach corresponds to the Proper
Orthogonal Decomposition (POD).

An additional difficulty is that for each choice of basis functions ¢ (&)
corresponds a different sequence of time-functions a(*)(¢). Then, given ¢¥) (&),
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how can we determine the coefficients a*)(¢)? Suppose we have chosen or-
thonormal basis functions, i.e.:

/ 6*) (&) ¢*2)(&) dF = by, 2)
Q

where

0 for kl # kQ,
5]61]62 =
1 for kl = kQ,

is the Kronecker delta symbol, then:
a®(t) = / u(Z,t)oW (&) dz.
Q

Therefore for orthonormal basis functions, a(¥)(¢) depends only on ¢ (&)
and not on the other ¢’s. So for selecting the function ¢*)(&), it would be
useful to use orthonormality condition.

Moreover, while an approximation to any desired accuracy can always be
obtained if K can be chosen large enough, we may like to find, once and
for all, a sequence of orthonormal functions ¢*)(Z) in such a way that the
approximation for each K is as good as possible in a least square sense.
Now consider that we can measure (experimentally or numerically) at N,
different instants of time, M realizations of u(&,t) in M different locations
x1,Z2,---,Ty. The approximation problem (1) is then equivalent to find
orthonormal functions {¢(™ (#)}X_ | with K < N, solving:

K

minZ lu(@,t:) =) (u(@, t:), " (@)) 6P (@)Il3 (3)

k=1

where ||.||2 define the norm associated to the usual L? inner product (.,.).
Remind that for any vector § € RM, we have:

= gl = (3.9 =i G=\/vi +- +

The practical method to solve the minimization problem (3) is to arrange
the set of data U = {u(&,t1), - ,u(& tyn,)} in an M x N; matrix A called

n

<
I

Ym
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the Snapshot Data Matrix.

u(zy, t)  ulzy,te) oo ulzy,tne-1)  u(@,ta,)
Ao U(xz.’tl) u(:vg.,tQ) U(xz,.tNt—l) ’U,(.TQ, tn,) « RMAN
U(IL"M,tl) U($M,t2) U(fEM,tNt—ﬂ U(-TM;tNt)

(5)

Each column A.; € RM of the snapshot data matrix represents a single

snapshot u (&, t;) of the input ensemble /. We can note that if the snapshot

data are assumed to be linearly independent (this will be the case in partic-

ular for the snapshot POD method for reasons explained in §5.4.1) then the
snapshot data matrix has full column rank.

The solutions of the problem of minimization (3) are given by the trun-
cated Singular Value Decomposition of length K of the matrix A. For this
reason, the Singular Value Decomposition of a matrix is reviewed in §3. The
relationship between the Proper Orthogonal Decomposition and the Singular
Value Decomposition is addressed in §3.5.

3 The Singular Value Decomposition (SVD)

3.1 Definition of SVD

Let A be a general complex M by N; matrix. The Singular Value Decompo-
sition (SVD) of A is the factorization (see Golub and Van Loan, 1990):

A=UzV1 (6)

where! U and V are (non unique) unitary? M x M respectively N; x N;
matrices, i.e. UU' = I;; and VVT = Iy,, and ¥ = diag(oy,--- ,0,,) with
o1 > 09 > --- > 0, > 0 where r = min(M, N;). The rank of A equals the
number of nonzero singular values it has.

The o; are called the singular values of A (and also of Af), the first r
columns of V' = (v, v, ,vy,) the right singular vectors and the first r
columns of U = (uy, ug, - - - ,ups) the left singular vectors. Since the singular
values are arranged in a specific order, the index i of the i** singular value
will be called the singular value number.

'Here, V1 denotes the adjoint matrix of V defined as the conjugate transpose of V.
2Remind that for a unitary matrix A=t = At. If A € RM*N¢ then V1 = V71 and V is
said orthogonal.
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3.2 Geometric interpretations of SVD
3.2.1 Geometric structure of a matrix

By definition of a matrix, an M x N, matrix A is a linear operator that
maps vectors from an N; dimensional space, say £y,, to an M dimensional
space, say £y. Imagine the unit sphere in £y, (the set of vectors of unit
magnitude). Multiplication of these vectors by the matrix A results in a
set of vectors which defines a r dimensional ellipsoid in &£,;, where r is the
number of non-zero singular values. The singular values o1, 09, - - - , 0, are the
lengths of the principal radii of that ellipsoid (see figure 1). Intuitively, the
singular values of a matrix describe the extent to which multiplication by the
matrix distorts the original vector. Moreover, since the matrix V' is unitary,
equation (6) writes AV = UX. The consequences are that the directions
of these principal radii are given by the columns of U and the pre-images of
these principal radii are the columns of V. A second geometric interpretation
is given in the next section.

Due to the interpretation of the matrix A in terms of linear algebra, it is
now obvious that the 2-induced norm of A is oy:

[A[l2 = max [[Az]|; = oy (7)

|=[|=1

A
Unit sphere

Ellipsoid of radii o;j

Figure 1: Geometric interpretation of the SVD of the matrix A: image by A
of a unit sphere.

3.2.2 SVD as a phase space rotation

A second geometric interpretation may be attributed to SVD applications.
We now view the M x N; matrix A as a list of coordinates of M points denoted
Py, P, ---, Py in an N; dimensional space. Each point P; is represented in
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Figure 2: Geometric interpretation of the SVD of the matrix A: phase space
rotation.

figure 2 by a diamond. For any £ < N,, we seek a k-dimensional subspace for
which the mean square distance of the points, from the subspace, is minimized

i.e. we search a vector &' (see figure 2) such that 3", | H; P;|? is minimized
where H; are the orthogonal projection of P; onto the line of direction vector
5(1). This mathematical procedure can be geometrically interpreted (see
figure 2) as a rotation of the phase space from the original basis into a new
coordinate system whose orthogonal axes coincide with the axes of inertia
of the data. This formulation of the SVD problem corresponds exactly to
the way the Principal Component Analysis is commonly introduced in the
literature (see Joliffe, 1986).

When the Singular Value Decomposition is used for data-analysis, the
SVD algorithm is generally applied to a matrix deduced from the snapshot
matrix A by subtracting from each column of A the mean of that column.
This mean shift ensures that the M point cloud is now centered around the
origin of the coordinate (see figure 2).

3.3 Relationships between SVD and eigenvalue prob-
lems
In this section, we present how the singular values and the right and left

singular vectors of a rectangular matrix A can also be computed by solving
symmetric eigenproblems with e.g., matrices AT A or AA!, instead of comput-
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ing the SVD of A. In this case, ATA and AAT represent a finite-dimensional
version of the two-point space-time correlation R introduced in §4.1. The
results of this section will be used in §3.5.

Let A = UXVT be a singular value decomposition of A € RM*N _ Then
AtA = VIUIUZVT = VE2VT where ¥2 is a diagonal matrix. Since AfA is
an hermitian matrix, its eigenvalue-decomposition writes: ATA = WAW ! =
W AW where W is an N, x N, unitary matrix. By comparing the two expres-
sion of A, we conclude that X2 = A, and W = V. In other words: o; = v/\;
and (V; A) is the eigenvector-eigenvalue decomposition of ATA € RNt >Nt

The same development applied to the matrix AA? leads to: AA! =
USVIVIUY = US2UT = WAWT, so (U, A) is the eigenvector-eigenvalue
decomposition of AAT € RMXM

At this point, we remark that the eigenvalue problem associated to ATA
is more practical to solve than the eigenvalue problem associated to AA' in
cases where the input collection /V, is significantly smaller than the number
of coefficients needed to represent each item of the collection M. This remark
explains that two different POD approaches exist: the classical POD (§5.3)
and the snapshot POD (§5.4).

3.4 Lower-rank approximation to A

Given A € RM*Nt  the computation of a matrix X € R¥*Nt with rank (X) =
k < rank (A) such that an appropriate norm of the error £ = A — X is
minimized, is a classical problem. This problem can be solved explicitly if
we take as norm the Frobenius norm, defined as the square root of the sums
of squares of all the elements and denoted as ||.||r or any unitarily invariant
norm®. The solution is given by the Eckart-Young theorem (see Higham,

1989) which states that:

min  ||[A— X||r=||4— Allr =
rank (x) <k

3For example, the 2-norm defined by equation (7) can be used. In this case, the Eckart-
Young theorem (8) writes (see Hubert et al., 2000):

min A= Xl = |4 — Aglls = ox41(A) -
rank (X) <k
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where:
_ Y 00\ ot _ t t
A, =U 0 0 VU =o1uivy + - + opugy,
with X the matrix obtained by setting oxy1 = 0190 =+ =0, =01in X.

Remark: This theorem establishes a relationship between the rank k& of
the approximant, and the (k + 1)™ largest singular value of A. Therefore, if
the singular values decrease is fast, we can hope to find an approximant with
small rank (see §3.6 for applications of SVD to data-image processing).

3.5 Relationship between POD and SVD

Here, we discuss the close relationship between POD and SVD. Our presen-
tation follow the view of Fahl (2000) but similar treatments can be found in
Atwell and King (1999). The reader is referred to Volkwein (1999) for the
mathematical demonstrations.

Suppose that each member of the input collection U/ defined in §2 can be
written in terms of an n** order finite element basis functions {¢\@) (&) [
ie.:

n
u(@, t;) = u"(& ;) = Y u¥(t:) oV (&)
j=1

where the superscript n denotes a high-order finite element discretization.
The inner product can then be defined by:

(u,v) =4 M3T 9)

where M € R"*" is the finite element mass matrix and 4, ¥ € R" are the
finite element coefficient vectors for a given ¢;. Employing a Cholesky factor-
ization M = M!/2 (Ml/Q)T, the M inner product (9) can be transformed
to the standard Euclidean inner product (4) such that the condition

1/2 T .
ullae = (u,w) = || (MY?) gl

holds. The minimization problem (3) can then be reformulated for the M
inner product as:

K

min Z (@, ;) — Y (u"(&,1,), 6P (&) ,, 6P (@)|3, (10)

k=1
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where the POD basis functions {¢*)}X are assumed to be in the linear
space spanned by the finite element basis functions {¢\) (&) Ty le

o (@) =" o) ()
j=1

In order to reformulate the minimization problem (10) in a matrix ap-
proximation context, let ® € R"™ X denote a matrix collecting the finite
element coefficients of the unknown POD functions. Since for any matrix
A e RN SN A2 = ||Allg, where |||z denotes the Frobenius norm
defined in §3.4, the problem (10) is equivalent to solving:

min ||A—ZZVA|% st. ZVZ =1k (11)

ZeRnXK
with A= (M'?)" A and Z = (M'?)" & € R™X.

Equation (11) indicates that we are looking for a K dimensional subspace
with orthogonal matrix Z such that X = 7 Z7T A is the best approximation to
A compared to all subspaces of dimension K. According to the Eckart-Young
theorem (8), the solution to problem (11) is given by a truncated Singular
Value Decomposition of A of length K:

Ax = UxSg VY (12)

where Uy, Vi correspond to the first K columns of U, V respectively. Finally,

A~

comparing Ag and the form of X, we found that the matrix ® solves:
(M) & = Uy € VK, (13)

The finite element coefficients of the POD basis functions can then be
computed by solving the linear system (13) where the left singular vectors
U of A = USVT can be obtained directly as the eigenvalues of the matrix
AAT (see §3.3). However, as it was previously remarked at the end of §3.3,
when N, is significantly smaller than n then it is more practical to solve
the eigenvalue problem AT A. Tt follows that, in this case, the right singular
vectors V of A is obtained and U must be deduced from V by the equation
U=x'AV.

Remarks: The eigenvalue problems can be solved with the library LA-
PACK* and efficient algorithms for POD computations based on Lanczos
iterations can be found in Fahl (2000).

*http:/ /www.netlib.org/lapack/
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3.6 Examples of image processing by SVD

As an illustration of the SVD process for computing low-rank approxima-
tions to data matrices (§3.4), consider a time-independent problem where
the input collection consists of greyscale images. In figure 5(a) and 6(a) the
“clown” picture and the “trees” picture from MatLab are considered. These
images can be represented by means of a 200 x 330, and a 128 x 128 ma-
trix respectively, each entry (pixel) having a value between 0 (white) and 1
(black) in 64 levels of gray. Both matrices have full rank, i.e. 200 and 128
respectively. Their numerical rank however are much lower. The singular
values of these two images are shown in figure 3 on a semi-log scale; both
sets of singular values fall-off rapidly, and hence low-rank approximations
with small error are possible.

Singular values
10 T T T

10 E|

10" E|

10 ¢

10 ¢ |

o

10 ¢ 3

107 F 3

107 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
Index

Figure 3: Singular values for the “clown” image (4) and the “trees” image

().

By comparing the spectrum of the two singular value plots, we can de-
termine that the relative error for approximants of the same rank is greater
for the “clown” image than for the “trees” image. Thus the “trees” image is
easier to approximate.

Eckart-Young theorem (see §3.4) stated that for any matrix A of rank N,
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an approximation of rank k£ < N of the matrix A can be obtained by:

A = gyusv! + opugvd + -+ + akukv,t

Thus using the Singular Value Decomposition, one can obtain a high
fidelity model perhaps with large k. In order to obtain a lower rank rep-
resentation of these images, singular modes corresponding to small singular
values are neglected. So if the spectrum of the singular values decays fast,
one can choose a cutoff value M < N and carry out an approximation of
A with a reduced number of singular modes. To make this idea more pre-
cise, one can define the relative information content of the Singular Value
Decomposition of A by:

RIC(M) = =— (14)

Relative information content

0.2 I I I I
0

I I I I I
20 40 60 80 100 120 140 160 180 200
M

Figure 4: Relative information content for the “clown” image (+) and the
“trees” image (o).

If the low rank approximation is required to contain 6% of the total
information contained in the original image, the dimension M of the subspace
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D3YP spanned by the M first singular modes is determined by:
M = argmin{RIC(M); RIC(M) > ¢}. (15)

In figure 4, the relative information content for the “clown” image and the
“trees” image are shown. The same result as previously mentionned for the
two images when the singular values spectrum was discussed is evidenced.
For a given number of singular modes, say M = 20 for example, respectively
60 % and 70 % of the information content of the original “clown” image and
“trees” image are contained in the approximation. This clearly demonstrates
that the “trees” image is easier to approximate by a lower rank image than
the “clown” image.

(c) Rank 12 approximation (d) Rank 20 approximation

Figure 5: Approximations of the “clown” image from MatLab by images of
lower rank.

Lastly, we present in figures 5 and 6, clockwise from top, the original
picture, and approximants of rank 6, rank 20, and rank 12, for the “clown”
image and “trees” image, respectively.



3 THE SINGULAR VALUE DECOMPOSITION (SVD) 16

(a) Original picture (b) Rank 6 approximation

(c) Rank 12 approximation (d) Rank 20 approximation

Figure 6: Approximations of the “trees” image from MatLab by images of
lower rank.
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4 The Proper Orthogonal Decomposition (POD)

This section introduces the Proper Orthogonal Decomposition in the spirit
of Holmes et al. (1996), as a technique which can contribute to a better un-
derstanding of turbulent flows. Here, POD is not reduced to an advanced
processing method that allow extracting coherent structures from experi-
mental or numerical data. Rather, POD is used to provide a set of basis
functions with which can be identified a low-dimensional subspace on which
to construct a dynamical model of the coherent structures by projection on
the governing equations. This idea was first applied in Aubry et al. (1988) to
model the near-wall region of a turbulent boundary layer and more recently
by Ukeiley et al. (2001) to study the dynamics of the coherent structures in
a plane turbulent mixing layer.

4.1 The Fredholm equation

Let {@(X), X = (&,t,) € D = R® x RT} denote the set of observations
(also called snapshots) obtained at NN, different time steps ¢, over a spatial
domain of interest Q (2 = (z,y,2) € Q). These snapshots could be ex-
perimental measurements or numerical solutions of velocity fields, vorticity
fields, temperatures, etc. taken at different time steps and/or different phys-
ical parameters, for example Reynolds number (see Christensen et al., 1998).
The underlying problem is to extract from this ensemble of random vector
field a coherent structure. Following Lumley (1967), a coherent structure is
defined as the deterministic function which is best correlated on average with
the realizations @(X). In other words, we look for a function ® which has
the largest mean square projection on the observations |(@, ®)|2. Since it is
only the parallelism between @ and the observations that is of interest, the
dependence on the amplitude of & must be removed. One way is to normal-
ize the amplitude of ®. It is then natural to look at a space of functions
& for which the inner-product exists, i.e. to impose & to be an element of
L?(D), the collection of square-integrable functions defined on flow region D.
Finally, in order to include the statistics, we must maximize the expression:

(g, 2)F)
IRl
in some average sense (temporal, spatial, ensemble or phase-average) denoted
here by (.) and to be specified for each application. The choice of the aver-

age operator is at the heart of the different POD approaches and a detailed
discussion of this point is postponed to §5.
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Hence, mathematically, the function L corresponds to the solution of the
constrained optimization problem:

(@ ®)) _ (@ 2)P

_max = = = (16)
gerzo) || W2 @2
with respect to: o .
(@, @) =2 =1
Here® (.,.) and ||.|| denote the usual L? inner product and L? norm over
D:
@8) = [[a%) 8 Xax =Y [wFe@ix ; Ja - @a)
D —Jo

where the x superscript indicates conjugate complex and n, is the number
of vectorial component of 4(X).

The maximization problem (16) can be cast in an equivalent eigenvalue
problem. To see this, let us define the operator R : L?(D) — L?*(D) by:

RB(X) = / R(X,X")®(X")dX'
D
where R(X, )E’) = (@(X)oa" (X'")) is the two-point space-time correlation
tensor (® is the dyadic product).

Then, straightforward calculations® reveal that:

(R&,8) = /D (6(X) & @ (X)) B(X)iX', 8(X))

= {(@ @) >0

512 seems to be a natural space in which to do Fluid Mechanics since it corresponds
to flow having finite kinetic energy, but the choice of other norms for the POD basis
computation is possible, see § 5.2 for a discussion.

6We suppose that the probabilistic structure of the ensemble of observations is such
that the average and integrating operations can be interchanged (see Berkooz, 1991).
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Furthermore, it follows that:
(R®,¥) = (®,R¥) forany (®,¥) e [L*(D)]

Then R is a linear, self-adjoint’, non-negative® operator on L?(D). Con-
sequently, spectral theory applies (see Riesz and Nagy, 1955; Courant and
Hilbert, 1953) and guarantees that the maximization problem (16) admits a
solution, equal to the largest eigenvalue of the problem:

R® = \d (17)

which can be written as a Fredholm integral eigenvalue problem:

3 / Ry (X, X")®;(X")dX" = A®;(X). (18)
j=1"P

—

The properties of the empirical eigenfunctions ®;(X) obtained by solving
the Fredholm equation (18) are fully discussed in §4.2. Here, it is sufficient
to make some comments shedding light on the constraints linked to the POD
method.

In equation (18), the integral .dX’ is over the entire domain D of

interest. The consequence is that tﬁe two-point correlation tensor R;; has
to be known over all D. Therefore, the data volume to handle can be very
important (several gigabytes are not rare) and sometimes a data compres-
sion is necessary to reduce the data storage requirements (see Cordier and
Bergmann, 2002, for an example). Due to the important size of the data
sets necessary to apply POD, renewed interest for POD appears only in the
1990’s explained by the great advances in numerical simulation capability
and in measurement techniques.

Remark: An alternative approach for finding the solution to maximization
of (16) is by directly solving a classical problem in the calculus of variations.
Since (R®, ®) = (| (4@, ®)[2), the problem (16) is equivalent to determine &
that maximizes A\ where:

- (19)

"i.e. Rt = R where the adjoint of R, R' is defined by:
(Rii, %) = (4,R'%) for all &4 € L*(D) and ¥ € L*(D).

8ie. (Ru, @) >0 for all @ € L*(D).
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Using the calculus of variations, ® is determining by imposing the con-

dition

dF(e)

7e = 0 with:

e=0

This leads one to verify for any Y the condition:

(Rcﬁ,f) =\ (5,?)

which is equivalent as finding the eigenvalue of the eigenvalue problem (17).

4.2

1.

Properties of the POD basis functions

For bounded integration domain D, Hilbert-Schmidt theory applies
(Riesz and Nagy, 1955) and assures us that there is not one, but a
denumerable infinity of solutions of (18). Then, the Fredholm equation
(18) has a discrete set of solutions satisfying:

> [ RyX X)E0X) X A8 (X) (o)
j=1"P

where A(™) and <1>§”) denote respectively the POD eigenvalues and POD
eigenvectors or eigenfunctions of order n = 1, 2, 3,---,+00. Each
new eigenfunction is sought as the solution problem of the maximiza-
tion problem (16) subject to the constraint of being orthogonal to all
previously found eigenfunctions. Hence, by construction, the eigen-
functions are mutually orthogonal but they can be choosen orthonor-
mal (see property 4). Any d-fold degenerate eigenvalue is associated
with d linearly independent eigenfunctions.

. R is a self-adjoint and non negative operator then all eigenvalues are

real and positive:
AD > A@ > A\®) > L) > (21)

and the corresponding series converges:

+oo
Z 2™ < 400
n=1
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3. The eigenfunctions <f>(n) form a complete orthogonal set, which means
that almost every member (except possibly on a set of measure zero,
see Berkooz et al., 1993) of the snapshots can be reconstructed in the
following way:

u(X) =Y adMeV (X) (22)

4. Eigenfunctions <f>(n) can be chosen mutually orthonormal®:

- S ) R % 0 f :
> [ 8(F) 0(%)dX = 5, { T
i=1 /P

1 for m=n.

5. The random coefficients a(™, projections of @ onto <f>, are then calcu-
lated by using the orthonormality of the eigenfunctions ®.

o = (@, &) =Y / w(X) 8" (X) dX. (25)
i=1 VD

6. The two-point space-time correlation tensor R;; can be decomposed as
a uniformly convergent series (see Courant and Hilbert, 1953):

g J

Ry(X,X") =" AMa{” (X)9;™ (X') (26)

n=1
This result is known as the Mercer’s theorem.

7. The diagonal representation of the tensor R;; combined with the de-
composition of @ on the eigenfunctions ® and their orthogonality assure

9Gince R is a self-adjoint operator the orthogonality is verified necessarily. On the other
hand, the choice of orthonormality for the eigenfunctions are rather arbitrary because
they are determined relative to a real multiplicative constant. Hence, it is numerically
equivalent to impose:

3 /D 3 (%) 820 (X) dR = A6, (23)
=1

for the eigenfunctions @Em) (X) and the condition {a'™a*(™) = §,,,, for the projection
coefficient a(™ or to impose for the eigenfunctions the orthonormality condition (24) and
the orthogonality condition (27) for the coefficients. For numerical reasons, it is easier
to use condition (24) for the “classical POD”, and condition (24) for the “snapshot POD”
(e.g. Rempfer and Fasel, 1994).
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that the coefficients a(™ are mutually uncorrelated and that their mean

square values are the eigenvalues themselves.

(@®a* ™)y = g, 2. (27)

Proof: This assertion derives directly from the representation of R;; ()_f X! )

given in equation (26):

“+00

+00
Ry(X, X') = (wi(X)uj(X)) = <Za<")<1>£") (X)) amer™(X)
n=1

m=1

+0o0 400

)

= Z Z <a(n)a*(m)> (I)Z(”)(X) q);f(m) (XI)

n=1m=1

But we know from the Mercer’s theorem that:

Ri;i(X,X') = > AWM (X).93 (X"),

and so, since the f’(n)(X' ) are an orthonormal family in L?(D), we see
that (a™a*(m) = 6, A,

O

8. Finally, the Mercer’s theorem and the orthonormality of <f>(n) lead to:

Ne +oo
Z/DR,-Z-(X’,X’) iX=3 \"=E (28)
i=1 n=1

If @(X) is a velocity field'?, then E corresponds to the Turbulent Ki-
netic Energy (TKE) integrated over the domain D. The interpretation
of this equation is that every structure of order (n) makes an indepen-
dent contribution to the TKE. Then, the amplitude of the eigenvalues
A™ measure the relative importance of the different structures present
within the flow.

10T the same way, if %(X) is a vorticity field as in Sanghi (1991), this relation leads to
the system enstrophy. So, whatever variable is considered for the POD, the eigenvalues
(™) obtained by solving the Fredholm equation (18) are always homogeneous to energy
but are not strictly speaking energy. Thinking of the POD eigenvalues as energy in a
general mechanical context is incorrect in principle and may lead to misleading results.
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4.3 Optimality of the POD basis

Suppose that we have a signal 'Fi(X ) with 4 € L?(D) and an approxima-

tion 4" of 4@ with respect to an arbitrary orthonormal basis @(n)(x ), n =
1,2, +00, one can write:

The equations (28) and (27) clearly stated that if the \IIZ(”) (X) have been
nondimensionalized then the expression (b(™*(™) represents the average ki-
netic energy in the nth mode. The following lemma establishes the notion
of optimality of the POD approach.

(2) ( 2 (00) (X )

Lemma Let {ti;(l)()_f), & (X),---,® } denote an orthonormal
set of POD basis elements, and {1, Ag, -+, Ao} denote the corresponding
set of eigenvalues. If:

denotes the approximation to % with respect to this basis, then for any value
of N (see Holmes et al., 1996):

N N N
Z(a(n)a*(n)> = Z/\(n) > Z(b(”)b*("))
n=1 n=1 n=1

Proof: It is straightforward (see the proof of equation (27) in §4.2) that

the kernel R;; can be expressed in terms of A ,n=1,---, 400 as:
JXL XN =303 ey o (X)) (X
n=1 m=1

Therefore, the projection of the kernel R;; in an N-dimensional space

spanned by {\I_}(n)}fle can be written in a matrix form as:

i (b(l)b*(l)) <b(1)b*(2)> (b(l)b*(N)) 0 --- 07
(b(2)b*(1)> <b(2)b*(2)> e (b(Q)b*(N)) 0 --- 0
B=1 gpy gmp@y .. pm™p@)y o ... g
0 0 0 0 0 0
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The proof finally relies on a result on linear operators (see Temam, 1988,
p- 260) which states that the sum of the first N eigenvalues of a self-adjoint
operator is greater than or equal to the sum of the diagonal terms in any
N-dimensional projection of it:

N N
Z)\(n) > Tr(R) = Z(b(”)b*(m)>
n=1 n=1

g

This lemma establishes that among all linear decompositions'?, the POD
is the most efficient, in the sense that, for a given number of modes, N,
the projection on the subspace spanned by the N leading eigenfunctions will
contain the greatest possible kinetic energy on average.

4.4 Model reduction aspects

The energetic optimality of the POD basis functions suggests that only a
very small number of PQD modes, say M, may be necessary to describe
efficiently any signal 4(X) of the input data. The choice of M is then an
important and critical task and adequate criteria for choosing M must be
introduced.

Let Npop denote the number of POD modes obtained by solving the
Fredholm equation (18). The truncation error e(M), of using M instead of
Npop POD basis functions in representing the input data is given by!%:

S\ =(n), =
(X)) 8" (X)|?
(29)
Lo 2 o 2(n) o
=1 Y (ax),8"(x)) 8" (X))

The quantity e(M) measures the accumulated squarred error in repre-
senting the input snapshots, due to neglecting POD basis elements that cor-
respond to small POD eigenvalues.

However, in practice, this criterion is never used and the choice of M is
rather based on heuristic considerations. As we indicated in point 8 of §4.2,
S°M A® represents in some sense (see footnote 10) the average energy'®

' The reader must remember that optimality of the POD functions is obtained only
with respect to other linear representations.

12Tt’s immediate to deduce from equation (29), equivalent forms for the two particular
approaches of POD described in §5. The reader is referred to Fahl (2000) where € is defined
for the snapshot POD.

3For turbulent flows, it corresponds exactly to the average Turbulent Kinetic Energy.
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contained in the first M POD modes. Therefore, to capture most of the
energy contained in the Npop POD modes, it suffices to choose M so that
M ND o~ SV @) By definition, the ratio Y, XO/ SNPoP A0 yields
the percentage of the total kinetic energy in the Npop POD modes that is
contained in the first M POD basis functions. For a predefined percentage
of energy 0 , the dimension M of the subspace spanned by the M first POD
functions is chosen such that the condition

=l > (30)

holds (see Cordier and Bergmann, 2002; Ravindran, 2000b; Fahl, 2000).
The criterion (30) is equivalent to the one based on the relative information

content used in §3.6 for the Singular Value Decomposition (see equation 15).

The POD reduced basis subspace is defined as DY PP = span{(f(l), 5(2), e <13(M)}.

To this point we have only discussed of the model reduction associated
with using POD basis functions in approximation of the input collection.
Dynamical models based on POD were not discussed. Nevertheless, the op-
timal energetic convergence of the POD basis functions suggests that only
a very small number of modes may be necessary to describe the dynamics
of the system. Therefore, starting from data issued from high-dimensional
models (experimental data or detailed simulations), it seems conceivable that
POD modes can be efficiently used in Galerkin projections that yield low-
dimensional dynamical models. Even though there are no theoretical guar-
antees of optimality in dynamical modelling, this method was already used
in many cases, for turbulent flows'* or optimal control of fluids '® and reason-
able to excellent models were obtained. The presentation of this approach is

MFor turbulent flows, POD is used to weave low-dimensional models that address the
role of coherent structures in turbulence generation (see Aubry et al., 1988; Ukeiley et al.,
2001).

3For optimal control of fluids, POD is used for obtaining reduced order models of
dynamics that reduces computational complexity associated with high complexity models
like the Navier-Stokes equations (see Ravindran, 2000a,b; Hinze, 2000; Fahl, 2000). In
the control literature (see Atwell and King, 1999), several philosophies exist for using a
reduced basis obtained by applying POD in low order control design. A “reduce-then-
design” approach involves reduction of the system model before control design, and the
“design-then-reduce” approach, in which full order model design is followed by full order
control design, and then by control order reduction.
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postponed to Cordier and Bergmann (2002).

As a partial conclusion, note that the reduced order models based on POD
belong to a wider class of approximation methods called Singular Value based
methods by Antoulas and Sorensen (2001). These authors recently review
the state of affairs in the area of model reduction of dynamical systems and
distinguish three broad categories of approximation methods (see figure 7):
Singular Value based methods, Krylov based methods and iterative methods
combining aspects of both the SVD and Krylov methods. Since, the strengths
and weaknesses of these methods are different, new insights can certainly be
gained by applying these approximation methods for fluid flow control. For
example, the reader is referred to Allan (2000) for an application of the
Krylov subspace method to derive an optimal feedback control design for the
driven cavity flow.

SVD based methods | Krylov based methods
Nonlinear systems Linear systems
POD methods Balanced truncation Lanczos
Empirical grammians || Hankel approximation Arnoldi
Interpolation

SVD-Krylov based methods

Figure 7: Overview of approximation methods for dynamical systems after
Antoulas and Sorensen (2001).

5 The different POD approaches

Except for the inner product, defined as the standard L? inner product for
simplicity of presentation, the POD was derived in §4 in a general setting.
The fundamental questions of the choice of:

> the input collection,

> the inner product,

> the averaging operation (.) (spatial or temporal),

> the variable X (spatial & = (z,y, z) or temporal t),

were not discussed. This section demonstrates that different orthogonal de-
composition can be obtained depending, for example, on the way the averag-
ing operator (.) is defined for calculating the kernel of the Fredholm equation
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(18). In what follows, only two methods: the classical POD (§5.3) and the
snapshot POD (§5.4) will be fully described. The reader is referred to Aubry
et al. (1991) for a presentation of the generalization of these two methods
called: the Biorthogonal Decomposition.

5.1 Choice of input collection

Choosing an input collection is a vital part of the Proper Orthogonal De-
composition process since the POD basis only reflects information provided
by the input collection. The POD eigenfunctions are intrinsically linked to
the input data used to extract them. This is the source of the method’s
strengths as well as its limitations: extrapolation of the POD functions to
different geometry or control parameters (Reynolds number, ...), can be dif-
ficult to undertake (see Delville et al., 1998, §4.6, p. 254 for a discussion).

When the POD basis is used for model reduction (§4.4), an input collec-
tion of time snapshots is frequently chosen (see §5.4). Typically, this data sets
comes from experimental measurement or numerical computations. Hence
the data have some error associated with them. Therefore it is important
to study the effect of these errors, assimilated to infinitesimal perturbations,
on the outcome of the POD model reduction procedure. This fundamental
question have been only recently investigated theoretically by Rathinam and
Petzold (2001). These authors introduced the POD sensitivity factor as a
non dimensional measure of the sensitivity of the resulting projection with
respect to perturbations in data. They found that the POD sensitivity is rel-
evant in some applications of POD while it is not in some other applications.
These theoretical results still need to be illustrated by realistic examples is-
sued from Fluid Mechanics for example. Now, consider the ideal case with
no perturbations in the input collection. Choosing a time snapshot input
collection relevant for dynamical system description remains a difficult task
because there is no definitive way to decide: how many snapshots are neces-
sary to capture the information content of the system, how long numerical
simulations or experiments should be run to generate sufficiently resolved
snapshots, which initial conditions should be used'®.

For control problems based on reduced order models, an open question is
how to incorporate control information. A simple solution, generally used,

16The reader should remember that the input collection corresponds to solutions belong-
ing to the attractor of a dynamical system such as the Navier-Stokes equation in Fluid
Mechanics. If this attractor is ergodic, the initial conditions are forgotten as time proceeds
(see Holmes et al., 1996).
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is to generate snapshots using a variety of control inputs to excite system
dynamics that arise when a control is applied (see Graham et al., 1997).

5.2 Choice of inner product and norm

So far, POD was described in the context of the standard L? inner product
for reason of simplicity and more importantly because it corresponds to the
general case for fluid flow applications for reasons explained in §5.2.1. How-
ever, in few cases, it could be useful to use different inner product, to obtain
different notions of optimality (see § 5.2.2 and § 5.2.3).

5.2.1 L? inner product

Let L%(Q) be the Hilbert space of square integrable!” complex-valued func-
tions defined on ). For vector-valued functions 4, such as the velocity field
in a fluid flow, the inner product on L?(Q) is defined by:

@9) = [ (ot 4 +ud) 2 5 Nl = @), 6D
Q

where 2 denotes the spatial domain occupied by the fluid. Moreover, his
kinetic energy is proportionnal to ||@||?>. Therefore, L? is a natural space in
which to do Fluid Mechanics since it corresponds to flow having finite kinetic
energy. This is the reason which explains that the L? inner product is the
most used for defining the Proper Orthogonal Decomposition.

5.2.2 H! inner product

Let H'(Q2) be the Sobolev space of functions that, along with their first
derivatives belong to L*((2).

In Iollo (1997), it is found that the low order model developed for the
Euler equations by a straightforward Galerkin projection (see Cordier and
Bergmann, 2002, for a description of the method) was unstable. Therefore,
Iollo et al. (1998) proposed a way to improve the numerical stability of the
low-order model developped by Galerkin POD by redefining the norms in-
volved in the POD definition as:

(u,v)ez/uvdi‘—i-e/ (6u§v> dz (32)
Q Q

17Square integrable means that the functions f(z) belonging to L?(Q2) satisfy:

1/2
17l = (F, )2 = [ /Q |f|2dw] < oo
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where € is a parameter to take into account different metrics. Numerical
experiments conclude to definite benefit in employing the H' formulation of
the POD. Even though the use of the H' inner product seems beneficial for
the robustness of the reduced order model, we believe that it has not been
given sufficient attention in the literature.

5.2.3 Inner product for compressible flow

For compressible flow configurations, the velocity variables 4 = (u,v,w)
and thermodynamic variables (e.g. density p, pressure p, enthalpy h) are
dynamically coupled. This introduces questions of whether to treat the ther-
modynamic variables separately from the velocity, or together as a single
vector-valued variable (e.g. ¢(&) = (p,u,v,w,p)(Z&)). For a scalar-valued
POD, where separate POD modes is computed for each flow variable, the
standard L? inner product defined by (31) can be used (see Rowley, 2002).
For vector-valued POD, where all the flow variables are written as a single
vector ¢, the standard-inner product:

((_jl, (_jz) - / (plpz —+ UiUo + V1V9 + WiWe +p1p2) dz
Q

may not be a sensible choice for dimensional reason. Of course, one could sim-
ply nondimensionalize the variables, but then the sense in which projections
are optimal is rather arbitrary and depends on the nondimensionalization.
Rowley (2002) sought an inner product for compressible flow which makes in-
tuitive sense, in that the “energy” defined by the induced norm is meaningful
physical quantity. For a two-dimensional configuration, Rowley introduced
a vector-valued variable ¢ = (u, v, a) where u and v are the velocities and a
is the local sound speed, and defined a family of inner products as:

2€
g,,q>). = _ da 33
(44, (12)6 /Q <U1u2 + v1v2 + Yy = 1)ala2) x (33)

where v is the ratio of specific heats and € is a parameter. If ¢ = v then the
induced norm gives ||@||?> = 2hy i.e. twice the total enthalpy of the flow, and
if € = 1 then the induced norm gives twice the total energy of the flow.

5.3 Classical POD or direct method
This approach is the one originated by Lumley (1967). In this case, the

average (.) is temporal:
1
D== [ .dt
O=7 [
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and is evaluated as an ensemble average, based on the assumptions of sta-
tionarity and ergodicity. In the other hand, the variable X is assimilated to
the space variable & = (z,v, z) defined over the domain (.

Figure 8 describes schematically the principle of the classical POD.

Time
Direct POD
X A
S,
%,
Space X

Figure 8: Schematic view of the classical POD.

The corresponding eigenvalue problem is deduced easily from equation
(20) by replacing the domain of integration D by ) and the variable X by
@. The integral Fredholm equation to be solved is then given by:

3 / Ry (&, &) 8(@) & = A" 8" (&) (34)
=179

B 1 . Npop .
Rij(&,a') = = /T wi(@ tyuy(a’ 1) dt =Y AWM (&)e(* ()
n=1

with 7' a sufficiently long period of time for which the space-time signal
4 (2,t) is known and with Npop the number of POD modes i.e. the size of
the eigenvalue problem (34). Note that the eigenfunctions arising from this
decomposition are purely spatial.
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Discussion of the size of the eigenvalue problem. Given M the num-
ber of spatial points'® of the snapshots data and n, the number of components
of the variable % used for the decomposition, Npop = M X n.. Now, sup-
pose one performs a detailed numerical simulation or one employs a modern
measurement technique as Particle Image Velocimetry in Fluid Mechanics.
In each case, a large number of gridpoints M can be obtained and the size
of the POD problem can then quickly become too large to be solved with a
good numerical precision even with numerical library dedicated to this kind
of problem, like the ARPACK library*®.

Nevertheless, as it will be demonstrated in §6, the POD method can be
viewed as the generalization of the harmonic decomposition to the inhomo-
geneous directions. So one way to take into account this size constraint with
the classical POD approach, is to decompose the flow directions in homoge-
neous directions and inhomogeneous directions as it was done in general in
experimental approaches (see Delville et al., 1999; Ukeiley et al., 2001).

Now, suppose the number of ensemble members deemed adequate for a
description of the process is NV; with V; < M (the question of determining
N; is not addressed), then even if the eigenvalue problem can be accurately
solved, time can be saved in solving an eigenvalue problem of size N;. This
remark is at the heart of the method of snapshots presented in §5.4.

5.4 Snapshot POD

The snapshot POD method, suggested by Sirovich (1987a,b,c), is the exact
symmetry of the classical POD. The average operator (.) is evaluated as a
space average over the domain €2 of interest:

(.):/Q.di'

and the variable X is assimilated to time ¢.

The principle of the snapshot POD method is schematically described in
figure 9.

8M = N, x N, x N, where N, N, and N, are the number of nodes of the experimental
or numerical grid respectively in directions X, Y and Z.
Yhttp: //www.caam.rice.edu/software/ ARPACK
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Snapshot POD /

X

B T E—

Average over space

Figure 9: Schematic view of the snapshot POD.

5.4.1 Discrete eigenvalue problem

To derive the discrete eigenvalue problem corresponding to the snapshot
POD, we assume?® that @ has a special form in terms of the original data:

Ny
&(2) =)  alty)d(&, 1) (35)
k=1
where the coefficients a(ty), k = 1,---, N; are to be determined so that o

given by the expression (35) provides a maximum for (16) i.e. is the solution
of equation (34) written here for convenience as:

/Q R(&, &) ®(&) d&' = \ D(&). (36)

-

The two-point spatial correlation tensor R(&, ') is estimated under station-
arity and ergodicity assumptions as:

Ny
R(&,2') = 7 / (Z,t) @ u*(x',t) dt = ~ D (3, t) ® i (a, 1)
T =1

Substituting this expression of R and the decomposition (35) of @ into

20More exactly, the properties of the span of the POD eigenfunctions guarantee that
such a development exists (see Holmes et al., 1996).
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equation (36), we obtain:

Z]j; (ﬁ_: %t ( /Q @&, 1) - 4 (2, 1) df’) a(tk)> (%, t;) = A NZ a(ty)@(Z, tr)

and we conclude that a sufficient condition for the coefficients a(tx) to be a
solution of equation (36) is to verify:

Nt

1 -
Yy (a(ﬁ',tk),a*(m',ti)) alty) = Xa(ty) i=1,---,N,  (37)
k=1 Ny

This can be rewritten as the eigenvalue problem:

CV =\V (38)
where
a(tl)
1 o ko . N a(tg)
Cri=— [ u(& ty) -u*(Z,t;)dé and V = )
N; Ja :
a(tNt)

Note that in order for (37) to be a necessary condition, one needs to as-
sume that the observations 4 (&,1t;), i = 1,--- , Ny are linearly independent.

Since C' is a nonnegative Hermitian matrix, it has a complete set of or-
thogonal eigenvectors:

a(l) (tl) 0(2) (tl) G(Nt) (tl)
a(l) (tNt) CL(2) (tNt) a(Nt)(tNt)

along with a set of eigenvalues A > X2 > ... > X(™) > 0. Now, for
reason of simplicity, we can impose that the projection coefficients a(ty), k =
1, , N; verify the same orthonogonality conditions as for the classical POD.

Then we can normalize the temporal eigenfunctions ‘7(0 by requiring that:

1 — (N — (M
N (V7)== 3 a0 () = X
t
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It is now easy to check that if the POD eigenfunctions 3" (&) are not
estimated via equation (35) but as:

=(n) 1 (n) =

then the spatial modes are orthonormal:

/ 8" (@) 8" (@) d& = bpm.
Q

5.4.2 Continuous eigenvalue problem

So far, the snapshot POD method was presented as Sirovich did in his orig-
inal work (see Sirovich, 1987a,b,c). Therefore the eigenvalue problem (38) is
discrete and not continuous as was defined the eigenvalue problem (34) de-
rived for the classical POD. However, deducing from equation (38) an integral
Fredholm equation is immediate, we obtain:

/ Ot #)a™ (¢) dt = A\®a® (1) (40)

where C(t,t') is the two-point temporal correlation tensor defined?' as:

NPOD

C(t,t) = ;,/Sluz(w t)u;(&,1") =7 Z (n) n)* ().

The main properties of the snapshot POD are the following:

1. The eigenfunctions are purely time dependent.
2. No cross-correlations appear in the kernel.

3. Homogeneity hypothesis is not required to lower the size of the eigen-
value problem.

4. Linear independence of the snapshots is assumed.

5. The size of the eigenvalue problem (40) is Npop = N;. Then as was
already mentionned in §5.3, the snapshot POD reduces drastically com-
putationnal effort when M the number of spatial points of the snapshots
data is much greater than /V;. For this reason, every time this condition
is verified, the snapshot POD will be preferred.

2Tn this definition, the summation over i is implicit.
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5.5 Common properties of the two POD approaches
5.5.1 General properties

Whatever the particular method used to determine the spatial and temporal
POD eigenfunctions, they verified the following properties:

1. Each space-time realization u;(&,t) can be expanded into orthogonal
basis functions ®™ (&) with uncorrelated coefficients a(™ (¢):

Npop

wi(®1) = Y a(t)e" (&)

n=1

2. The spatial modes <f)(n) (&) are specified to be orthonormal:

/ 3™ (&) - 8™ (&) dz = 5,,
Q
3. The temporal modes a(™ (t) are orthogonal:

1 / o™ (£)al™* (£) dt = \Ds,,
T Jr

5.5.2 Incompressibility and boundary conditions

The spatial basis functions @5“’(&) can be calculated from the velocities
u;(#,t) and the coefficients a(™(t), by integrating over a sufficiently long

period of time T and normalizing by the eigenvalues A\(™:

1
" (x) = . /T iz, t)a™* (t) dt (41)
The POD basis functions are then represented as linear combinations of
instantaneous velocity fields. Therefore, all the properties of the snapshots
that can be written as linear and homogeneous equations pass directly to the
POD basis functions. For example, if the snapshots are divergence free, then
we obtain divergence-free POD basis functions:

6’&:0:}65(7‘):0 Vnzl,---,Np()D

If the snapshots satisfy homogeneous Dirichlet boundary conditions then
we also obtain POD basis functions satisfying homogeneous boundary con-
ditions.
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5.6 Snapshot POD or “classical” POD ?

As it was presented respectively in §5.3 and §5.4, two different POD ap-
proaches exist, the classical POD and the snapshot POD, then how can we
choose for each practical configurations the pertinent method? The answer
is mainly determined by the particular data set available for the evaluation
of the kernels.

In one hand, data obtained by numerical simulations like Direct Numeri-
cal Simulation or Large Eddy Simulation can be highly resolved in space and
time but due to cost considerations only a very short time sample is simu-
lated. In the same vein, a good spatial resolution can be obtained by Particle
Image Velocimetry, but associated to a poor temporal resolution. These two
configurations, characterized by a moderate time history and a high spatial
resolution, correspond to situations for which the two-point temporal corre-
lation tensor C'(¢,t') is statistically well converged.

On the other hand, experimental approaches like Hot Wire Anemometry
or Laser Doppler Anemometry provide a well defined time description but
with limited spatial resolution. These measurements techniques enabled long
time history and moderate spatial resolution. Therefore, the two-point spa-
tial correlation tensor R;;(#,&') is statiscally well converged.

In conclusion, the data issued from an experimental approach will be gen-
erally?? treated by using the classical method and data issued from numerical
simulations by the snapshots method.

6 POD and harmonic analysis

As long as the domain D defined in (18) is bounded, the Hilbert-Schmidt
theory applies (see Riesz and Nagy, 1955) and all the properties stated in
§4.2 hold. It is thus necessary to pay special attention to flow directions
assumed to be homogeneous, stationary or periodic.

6.1 A first approach: homogeneity in one direction

As a first approach, we can assume, for example, that the spatial direction
OX3 is homogeneous (a generalization including other directions is straight-
forward). If OXj; is homogeneous then the two-point correlation R(Z,x’)

22 An exception is the case of data sets obtained from Particle Image Velocimetry.
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depends only on the difference r3 = x4 — x3 of the two coordinates in the
0 X3 direction:

/ ! / ' ! / .
Rij ($1,$1,$2,$2,$3,.’E3,t,t) = RZJ ('Tlaxlax%x%tvt 7T3) .

Splitting the space-time variable X = (z1, s, z3,t) into an homogeneous
variable z3 and an inhomogeneous variable ¥ = (x1, Z, t), the integral Fred-
holm equation (18) writes:

Ne +o00
S [ RuG Rim - a)@ (X, AR = (T (12)
D' J -0

Under homogeneity hypothesis, we may develop the spatial eigenfunction
®, in a Fourier series decomposition as:

—+00

@(%;rs) = DX ks) - exp(2mjksrs) (43)

ks=—00

and introduce II;; the Fourier transform of R;; in the direction OXj3:

400
IL;(X, X' k3) = Ri; (X, X'; m3) exp(—2m jkars) drs
£ , (44)
= R;j(X,X'; —rs) exp(2m jksrs) drs

where k3 is the spatial wavenumber associated to r3.

Substituting expression (43) in equation (42), we first obtain:

nc 400
/ / Rij(%, % —ra)&; (%', ks) - exp[2mjka(ws + r3)|ddrs =

Jj= 1k3 —0o0

Z /\(k3)<i>z~(>2; k) . exp(2mjksz3)

(45)
Then replacing the two point correlation R;; by his Fourier transform II;;
defined by equation (44) the Fredholm equation becomes:

Z/ ii(X, X5 ks)®; (X', ks)d X' | exp(2mjksrs) =
ks=—o00 j=1 (46)

Z A(ks)®i(%; ks) - exp(2mjkszs)



6 POD AND HARMONIC ANALYSIS 38

Finally, unicity of the Fourier series coefficients implies that the Fredholm
equation (18) is equivalent to:

/ (% k) (% ko) & = M) di(%iks) (47

The conclusion is that homogeneity hypothesis in O X3 direction decouples
the initial POD problem into a set of lower dimensional problems. For each
Fourier wavenumber k5 the eigenvalue problem to solve writes:

Z / 3 %18, (R)d ¥ = A6i(R) Vhy (48)

Another key result is that in each homogeneous (or stationary) direction,
harmonic functions are solutions of the integral Fredholm equations. Then, as
a first approximation, the Proper Orthogonal Decomposition can be viewed
as the generalization of the harmonic decomposition to the inhomogeneous
directions.

This result is especially useful in systems where the domain D is of higher
dimension. For example, in the study of the three-dimensional turbulent
plane mixing layer realized via the classical POD in Delville et al. (1999)
and Ukeiley et al. (2001), we appeal to homogeneity in the spanwise (z3)
and streamwise?® (z,) directions. Selecting the finite domain [0, L;] x [0, L]
in these variables, we used a mixed Fourier-empirical decomposition of the
form:

N
1/2 i POD 2™, omi(kiz1+kazs)
@(@,1) = (L1 Ls) kl,kg ()@ "(w2; k1, k3) e dky dks

The vector-valued eigenfunctions ‘f)(n) (x9; k1, k3) are obtained by solving
a Fredholm equation analogous to (18) in which the kernel R;; is replaced
by the cross-spectral tensor U,;(xs, xh; k1, k3) defined as the streamwise and
spanwise transform of the cross-correlation tensor. More details are given in
Cordier (1996); see also Delville et al. (1999) and Ukeiley et al. (2001).

23As detailed in Delville et al. (1999), time is mapped to the streamwise direction
through Taylor’s hypothesis.
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6.2 Discussion of the “phase indetermination”

The “phase indetermination” is one of the most important limitations of the
POD. This indetermination is due to the use of two-point correlations and,
as it will be demonstrated in the following, appears only for directions where
an harmonic decomposition was used.

Suppose that the eigenfunction @j(i'; ks3) is a solution of equation (47).
Then it can be easily proven that every function ®;(X'; ks) 8(ks), where 8(ks)
is a random phase function, will also be a solution. The phase information
between the different modes is lost, the eigenfunctions @Z(i, k3) are known
up to an arbitrary function #(k3) which needs to be determined. In partic-
ular, for the classical POD, it is impossible to obtain directly a description
of the preferred modes in the physical space. However, description of the
dominant modes can be obtained by using a complementary method called
the shot-noise theory fully described in Herzog (1986) and in Moin and Moser
(1989). The reader is referred to Delville et al. (1999) for an application of
the shot-noise theory to recover from the POD eigenfunctions determined
via the classical POD the dominant modes of a three-dimensional turbulent
mixing layer.

An alternative way is to build, from the dominant POD eigenfunctions,
a low-order model by use of a Galerkin projection of the governing equations
onto the POD modes, leading to a low-order dynamical system described
by a set of Ordinary Differential Equations. In this case, these equations
themselves drive the missing spectral phase information. This approach has
been succesfully addressed for the wall region of a turbulent boundary layer
in Aubry et al. (1988) and for a plane turbulent mixing layer in Ukeiley et
al. (2001). Naturally, this kind of low-order models is particularly suited for
active flow control studies (see §4.4 for a discussion).

7 Evaluative summary of the POD approach

The Proper Orthogonal Decomposition is a powerful and elegant method of
data analysis aimed at obtaining low-dimensional approximations of high-
dimensional processes. For turbulent flows, the POD approach by itself is
neither a theory nor a closure method. However, a better understanding of
the role of Coherent Structures in turbulence generation can be gained with
low-order dynamical system developed by Galerkin Projection of the gov-
erning equations onto the POD basis functions (see Aubry et al., 1988, for
example). On the other hand, the recent invention of Micro Electro Mechan-



7 EVALUATIVE SUMMARY OF THE POD APPROACH 40

ical Systems has generated substantial interest for control methods for fluid
dynamics. The design of reduced-order controllers for fluid system is essen-
tial for real-time implementation and POD method is particularly suited for
deriving reduced-order models (see Ravindran, 2000a,b; Fahl, 2000; Atwell
and King, 1999).

Among the advantages related to the Proper Orthogonal Decomposi-
tion, the following points can be underlined:

>

The method is objective, methodic and rigorous: a mathematical frame-
work is provided by the Hilbert-Schmidt theory.

The POD is a linear method but no linear hypothesis is imposed on the
process. The fact that this approach always looks for linear or affine
subspaces instead of curved submanifolds makes it computationnally
tractable. However the POD does not neglect the nonlinearities of the
original vector field. If the original dynamical system is nonlinear, then
the resulting POD reduced order model will also typically be nonlinear.

The POD basis functions are optimal in terms of energy.

The efficiency of POD increases with the level of inhomogeneity of the
process. Then, this method is particularly suited for the analysis of
turbulent shear flows. Moreover, as the generalization of the Fourier
methods to inhomogeneous directions, POD is complementary to har-
monic methods.

Combined with the Galerkin Projection procedure, POD provides a
powerful method for generating lower dimensional models of dynamical
systems that have a very large or even infinite dimensional space.

Among the disadvantages related to POD are the following:

>

This technique requires the knowledge of a two-point correlation tensor
over a great number of points. Its use can then be limited by the
size of the data sets that can quickly becomes huge (see Cordier and
Bergmann, 2002, for an example).

Due to the use of two-point correlations, the phase indetermination
appears for directions where an harmonic decomposition has to be used.
For the classical POD, in particular, complementary techniques are
necessary to obtain a description of the preferred modes in the physical
space.
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> The POD basis functions are intrinsic?* by nature to the flow configura-
tions from which they have been derived. Therefore, it can happen that
a POD base, determined with a set of realizations of the flow model for
a specified control input, can perfectly reproduce the dynamics of the
flow for a fixed system and may not be sufficient when the system is
under the action of a control. In these cases, the POD base need to be
improved through an adaptative procedure (see Fahl, 2000; Ravindran,
2000a).
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