Optimal rotary control of the cylinder wake using POD reduced order model

Michel Bergmann, Laurent Cordier & Jean-Pierre Brancher

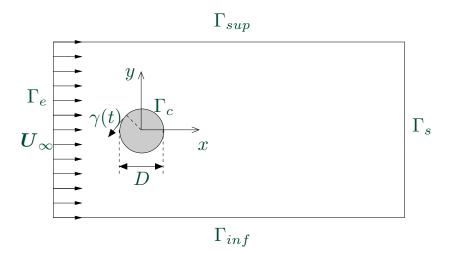
Michel.Bergmann@ensem.inpl-nancy.fr

Laboratoire d'Énergétique et de Mécanique Théorique et Appliquée UMR 7563 (CNRS - INPL - UHP) ENSEM - 2, avenue de la Forêt de Haye BP 160 - 54504 Vandoeuvre Cedex, France

- I Flow configuration and numerical methods
- II Optimal control
- III Proper Orthogonal Decomposition (POD)
- IV Reduced Order Model of the cylinder wake (ROM)
- V Optimal control formulation applied to the ROM
- VI Results of POD ROM
- **VII Discussion**
- VIII Nelder-Mead Simplex method
- **Conclusions and perspectives**

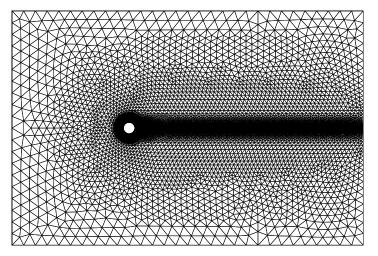
I - Configuration and numerical method

- Two dimensional flow around a circular cylinder at $R_e = 200$
- Viscous, incompressible and Newtonian fluid
- Cylinder oscillation with a tangential velocity $\gamma(t)$

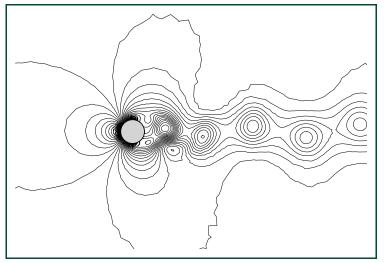


Fractional step method in time
 Finite Element Method (FEM) in space (P₁)

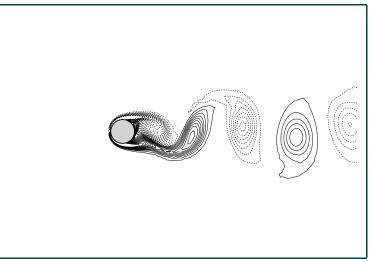
Numerical code written by M.Braza (IMFT-EMT2) & D.Ruiz (ENSEEIHT)



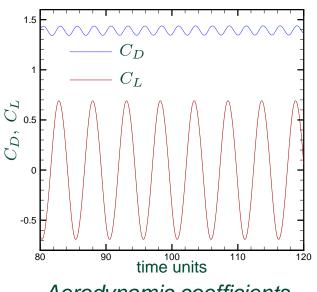
I - Configuration and numerical method



Iso pressure at t = 100.



Iso vorticity at t = 100.



Aerodynamic coefficients.

Authors	S_t	C_D
Braza <i>et al.</i> (1986)	0.2000	1.4000
Henderson <i>et al.</i> (1997)	0.1971	1.3412
He <i>et al.</i> (2000)	0.1978	1.3560
this study	0.1983	1.3972

Strouhal number and drag coefficient.

Mathematical method allowing to determine without a priori knowledge a control law based on the optimization of a cost functional.

State equations $\mathcal{F}(\phi, c) = 0$; (Navier-Stokes + I.C. + B.C.)

- Control variables c;
 (Blowing/suction, design parameters ...)
- Cost functional $\mathcal{J}(\phi, c)$. (Drag, lift, target function, ...)

Find a control law c and state variables ϕ such that the cost functional $\mathcal{J}(\phi, c)$ reach an extremum under the constraint $\mathcal{F}(\phi, c) = 0$.

II - Optimal control Lagrange multipliers

Constrained optimization \Rightarrow unconstrained optimization

- ► Introduction of Lagrange multipliers ξ (adjoint variables).
- ► Lagrange functional :

$$\mathcal{L}(\phi, c, \xi) = \mathcal{J}(\phi, c) - \langle \mathcal{F}(\phi, c), \xi \rangle$$

Force \mathcal{L} to be stationary \Rightarrow look for $\delta \mathcal{L} = 0$:

$$\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial \phi} \delta \phi + \frac{\partial \mathcal{L}}{\partial c} \delta c + \frac{\partial \mathcal{L}}{\partial \xi} \delta \xi = 0$$

► Hypothesis : ϕ , c and ξ assumed to be independent of each other :

$$\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi = \frac{\partial \mathcal{L}}{\partial c} \delta c = \frac{\partial \mathcal{L}}{\partial \xi} \delta \xi = 0$$

II - Optimal control *Optimality system*

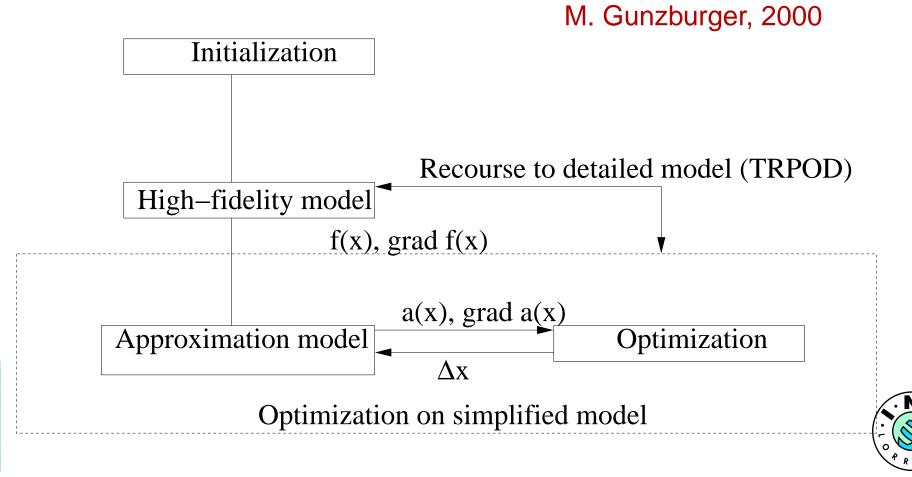
► State equations
$$\left(\frac{\partial \mathcal{L}}{\partial \xi}\delta\xi = 0\right)$$
:
 $\mathcal{F}(\phi, c) = 0$
► Co-state (adjoint) equations $\left(\frac{\partial \mathcal{L}}{\partial \phi}\delta\phi = 0\right)$:
 $\left(\frac{\partial \mathcal{F}}{\partial \phi}\right)^* \xi = \left(\frac{\partial \mathcal{J}}{\partial \phi}\right)^*$
► Optimality condition $\left(\frac{\partial \mathcal{L}}{\partial c}\delta c = 0\right)$:
 $\left(\frac{\partial \mathcal{J}}{\partial c}\right)^* = \left(\frac{\partial \mathcal{F}}{\partial c}\right)^* \xi$

 \Rightarrow Expensive method in CPU time and storage memory for large system!

⇒ Ensure only a local (generally not global) minimum

II - Optimal control Reduced Order Model (ROM)

"without an inexpensive method for reducing the cost of flow computation, it is unlikely that the solution of optimization problems involving the three dimensional unsteady Navier-Stokes system will become routine"



II - Proper Orthogonal Decomposition (POD)

▶ Introduced in fluid mechanics (turbulence context) by Lumley (1967).

► Look for a realization $\phi(X)$ which is closer, in an average sense, to the realizations u(X). $(X = (x, t) \in D = \Omega \times \mathbb{R}^+)$

 $\phi(X) \text{ solution of the problem :} \qquad \max_{\phi} \langle |(u, \phi)|^2 \rangle \quad \text{s.t.} \quad \|\phi\|^2 = 1.$

► Snapshots method, Sirovich (1987) :

$$\int_{T} C(t, t') a^{(n)}(t') dt' = \lambda^{(n)} a^{(n)}(t).$$

- ► Optimal convergence L^2 norm (energy) of $\phi(\mathbf{X})$ ⇒ Dynamical order reduction is possible.
- Decomposition of the velocity field :

$$u(x,t) = \sum_{i=1}^{N_{POD}} a^{(i)}(t) \phi^{(i)}(x).$$

III - Reduced Order Model of the cylinder wake (ROM)

► Galerkin projection of *NSE* on the POD basis :

$$\left(\boldsymbol{\phi}^{(i)}, \, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla})\boldsymbol{u}\right) = \left(\boldsymbol{\phi}^{(i)}, \, -\boldsymbol{\nabla}p + \frac{1}{Re}\Delta\boldsymbol{u}\right).$$

► Integration by parts (Green's formula) leads :

$$\left(\boldsymbol{\phi}^{(i)}, \, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u} \right) = \left(p, \, \boldsymbol{\nabla} \cdot \boldsymbol{\phi}^{(i)} \right) - \frac{1}{Re} \left((\boldsymbol{\nabla} \otimes \boldsymbol{\phi}^{(i)})^T, \, \boldsymbol{\nabla} \otimes \boldsymbol{u} \right) \\ - \left[p \, \boldsymbol{\phi}^{(i)} \right] + \frac{1}{Re} \left[(\boldsymbol{\nabla} \otimes \boldsymbol{u}) \boldsymbol{\phi}^{(i)} \right].$$

with
$$[a] = \int_{\Gamma} a \cdot n \, d\Gamma$$
 and $(A, B) = \int_{\Omega} A : B \, d\Omega = \sum_{i, j} \int_{\Omega} A_{ij} B_{ji} \, d\Omega$.

III - Reduced Order Model of the cylinder wake (ROM)

• Velocity decomposition with N_{POD} modes :

$$\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{u}_m(\boldsymbol{x}) + \gamma(t) \, \boldsymbol{u}_c(\boldsymbol{x}) + \sum_{k=1}^{N_{POD}} a^{(k)}(t) \boldsymbol{\phi}^{(k)}(\boldsymbol{x}).$$

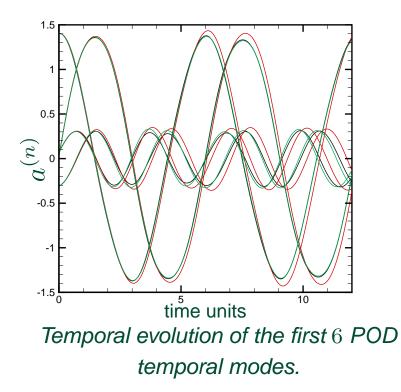
▶ Reduced order dynamical system where only N_{gal} ($\ll N_{POD}$) modes are retained (state equations) :

$$\frac{d a^{(i)}(t)}{d t} = \mathcal{A}_{i} + \sum_{j=1}^{N_{gal}} \mathcal{B}_{ij} a^{(j)}(t) + \sum_{j=1}^{N_{gal}} \sum_{k=1}^{N_{gal}} \mathcal{C}_{ijk} a^{(j)}(t) a^{(k)}(t) + \mathcal{D}_{i} \frac{d \gamma}{d t} + \left(\mathcal{E}_{i} + \sum_{j=1}^{N_{gal}} \mathcal{F}_{ij} a^{(j)}(t) \right) \gamma + \mathcal{G}_{i} \gamma^{2}$$
$$a^{(i)}(0) = (\boldsymbol{u}(\boldsymbol{x}, 0), \boldsymbol{\phi}^{(i)}(\boldsymbol{x})).$$

 $\mathcal{A}_i, \mathcal{B}_{ij}, \mathcal{C}_{ijk}, \mathcal{D}_i, \mathcal{E}_i, \mathcal{F}_{ij} \text{ and } \mathcal{G}_i \text{ depend on } \phi, u_m, u_c \text{ and } Re.$

IV - Reduced Order Model of the cylinder wake *Stabilization*

Integration and "optimal" stabilization of the POD ROM for $\gamma = A \sin(2\pi S_t t)$, A = 2 and $S_t = 0.5$. POD reconstruction errors \Rightarrow temporal modes amplification

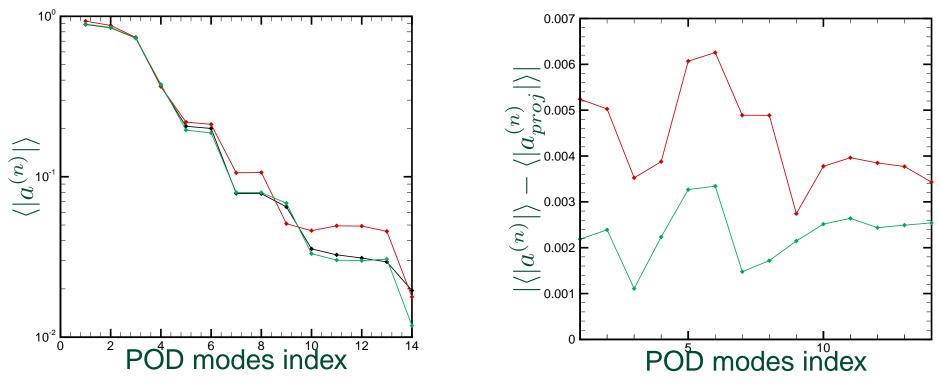


► Causes :

- Extraction by POD only of the large energetic eddies
- Dissipation takes place in small eddies
- ► Solution :
- Addition of an optimal artificial viscosity on each POD mode

projection (Navier-Stokes) prediction before stabilization (POD ROM) prediction after stabilization (POD ROM).

IV - Reduced Order Model of the cylinder wake *Stabilization*



Comparison of energetic spectrum.

Comparison of absolute errors.

Good agreements between POD ROM spectrum and DNS spectrum

 \Rightarrow Validation of the POD ROM

V - Optimal control formulation based on ROM

► Objective functional :

$$\mathcal{J}(\boldsymbol{a},\gamma(t)) = \int_0^T J(\boldsymbol{a},\gamma(t)) \, dt = \int_0^T \left(\sum_{i=1}^{N_{gal}} a^{(i)^2} + \frac{\alpha}{2}\gamma(t)^2\right) \, dt.$$

 α : regularization parameter (penalization).

► Co-state equations :

$$\begin{cases} \frac{d\xi^{(i)}(t)}{dt} = -\sum_{j=1}^{N_{gal}} \left(\mathcal{B}_{ji} + \gamma \,\mathcal{F}_{ji} + \sum_{k=1}^{N_{gal}} \left(\mathcal{C}_{jik} + \mathcal{C}_{jki} \right) a^{(k)} \right) \xi^{(j)}(t) - 2a^{(i)} \\ \xi^{(i)}(T) = 0. \end{cases}$$

Optimality condition (gradient) :

$$\delta\gamma(t) = -\sum_{i=1}^{N_{gal}} \mathcal{D}_i \frac{d\xi^{(i)}}{dt} + \sum_{i=1}^{N_{gal}} \left(\mathcal{E}_i + \sum_{j=1}^{N_{gal}} \mathcal{F}_{ij} a^{(j)} + 2\mathcal{G}_i \gamma(t) \right) \xi^{(i)} + \alpha\gamma.$$

T R A

V - Optimal control formulation based on ROM

► $\gamma^{(0)}(t)$ done; for n = 0, 1, 2, ... and while a convergence criterium is not satisfied, do :

1. From t = 0 to t = T solve the state equations with $\gamma^{(n)}(t)$; \hookrightarrow state variables $a^{(n)}(t)$

2. From t = T to t = 0 solve the co-state equations with $a^{(n)}(t)$; \hookrightarrow *co-state variables* $\xi^{(n)}(t)$

- 3. Solve the optimality condition with $a^{(n)}(t)$ and $\xi^{(n)}(t)$; \hookrightarrow objective gradient $\delta\gamma^{(n)}(t)$
- 4. New control law $\hookrightarrow \gamma^{(n+1)}(t) = \gamma^{(n)}(t) + \omega^{(n)} \, \delta \gamma^{(n)}(t)$

▶ No reactualization of the POD basis.

► The energetic representativity is *a priori* different to the dynamical one :

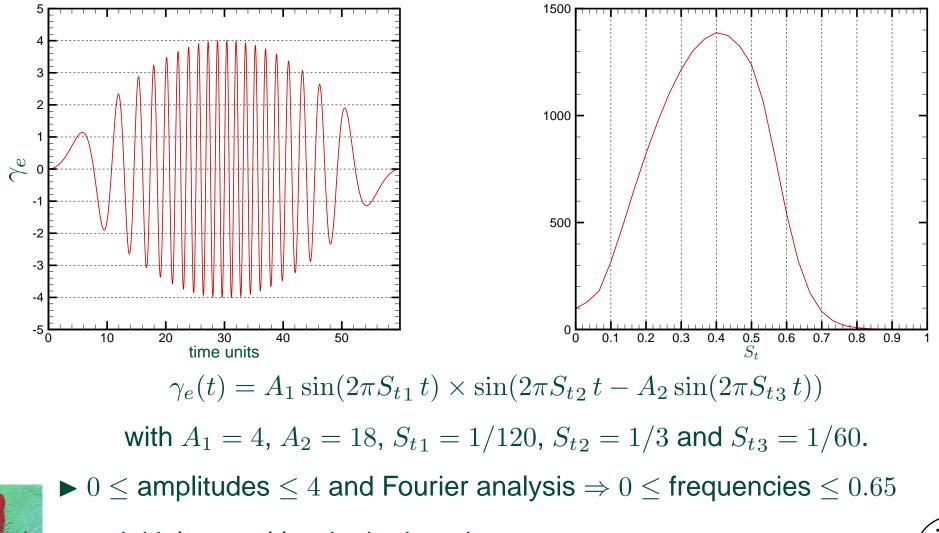
 \hookrightarrow possible inconvenient for control,

 \hookrightarrow a POD dynamical system represents *a priori* only the dynamics (and its vicinity) used to build the low dynamical model.

Construction of a POD basis representative of a large range of dynamics :

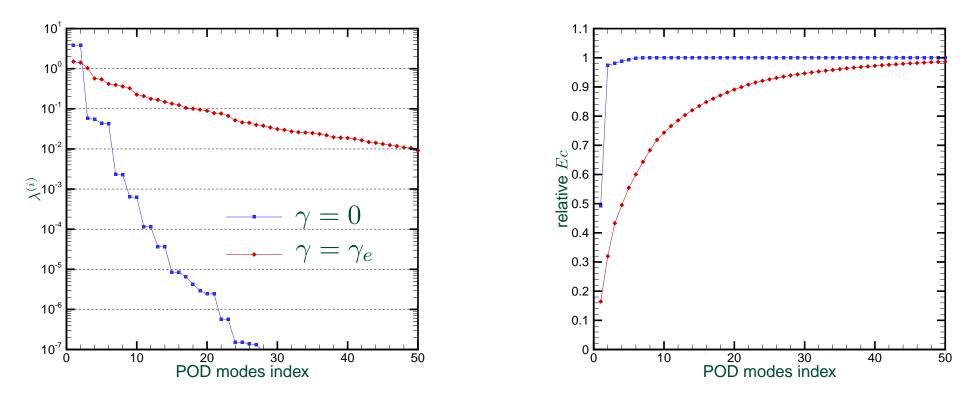
 \hookrightarrow excitation of a great number of degrees of freedom scanning $\gamma(t)$ in amplitudes and frequencies.

VI - Closed loop results *Excitation*



 $\blacktriangleright \gamma_e$ initial control law in the iterative process.

VI - Closed loop results *Energy*

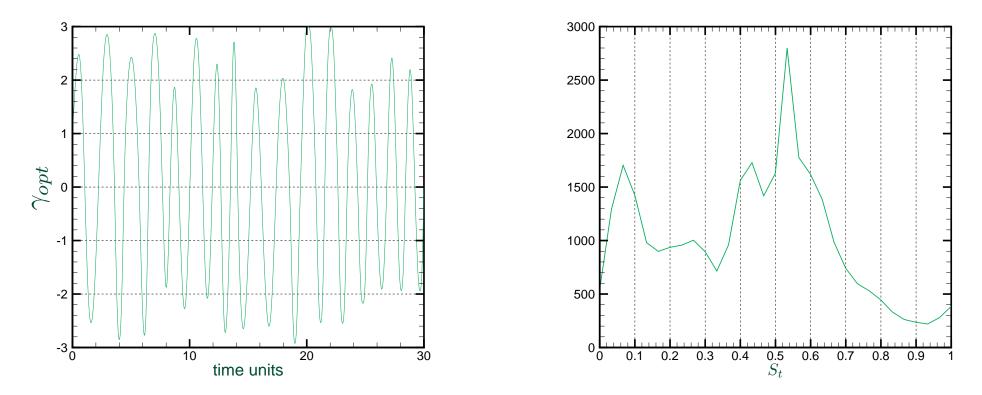


Stationary cylinder $\gamma = 0 : \hookrightarrow 2$ modes out of 100 are sufficient to restore 97% of the kinetic energy.

► Controlled cylinder $\gamma = \gamma_e : \hookrightarrow 40$ modes out of 100 are then necessary to restore 97% of the kinetic energy

 \Rightarrow Improvement of the POD ROM robustness to dynamical evolutions

VI - Closed loop results *Optimal control*



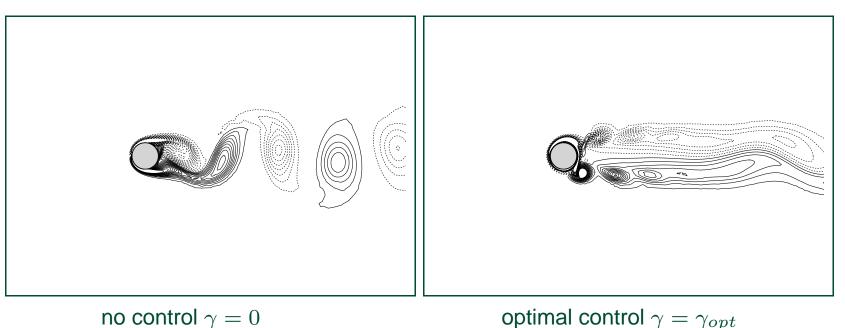
► Reduction of the wake instationarity. $\gamma_{opt} \simeq A \sin(2\pi S_t t)$ with A = 2.2and $S_t = 0.53$

$$\mathcal{J}(\gamma_e) = 9.81 \implies \mathcal{J}(\gamma_{opt}) = 5.63.$$

The control is optimal for the reduced order model based on POD.
 Is it also optimal for the Navier-Stokes model?

VI - Closed loop results Comparison of wakes' organization

► No mathematical proof concerning the Navier Stokes optimality.

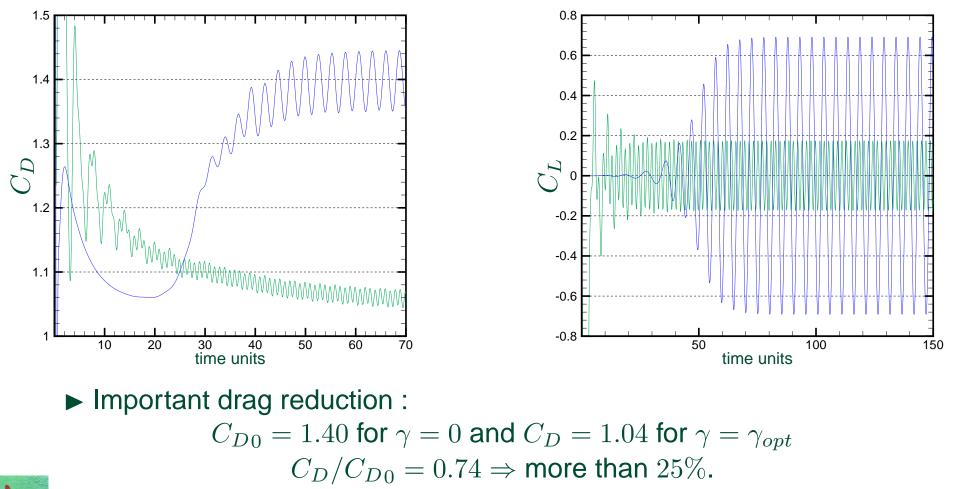


Isocontours of vorticity ω_z .

- ▶ no control : $\gamma = 0 \Rightarrow$ Asymmetric flow.
 - \hookrightarrow Large and energetic eddies.

- optimal control : $\gamma = \gamma_{opt} \Rightarrow$ Symmetrization of the (near) wake.
 - \hookrightarrow Smaller and lower energetic eddies.

VI - Closed loop results Aerodynamic coefficients



► Decrease of the lift amplitude :

 $C_L = 0.68$ for $\gamma = 0$ and $C_L = 0.13$ for $\gamma = \gamma_{opt}$.

VI - Closed loop results *Numerical costs*

▶ Optimal control of NSE by He *et al.* (2000) :

 → harmonic control law with A = 3 and S_t = 0.75.
 ⇒ 30% drag reduction.

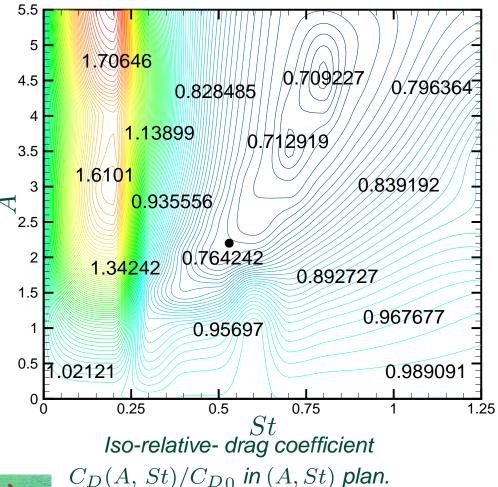
 ▶ Optimal control POD ROM (this study) :

 → harmonic control law with A = 2.2 and S_t = 0.53.

 $\Rightarrow 25\%$ drag reduction.

- Less energetic costs (greater energetic gain ?)
- Reduction costs using POD ROM compared to NSE :
 - calculus time : 100
 - Memory storage : 600

 \hookrightarrow "Optimal" control of 3D flows becomes possible !



Observations

Minimum is located in a smooth valley

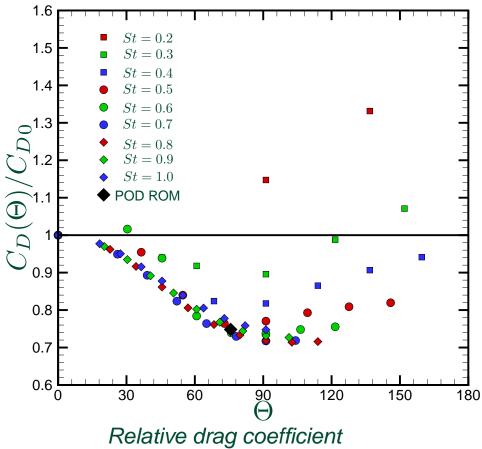
 \hookrightarrow Global minimum : around A=4.4 and St=0.76

 Maximum is located in a sharp peak

 \hookrightarrow Global maximum : near St=0.2, the natural frequency : lock-on flow

Finding the global minimum with an optimization algorithm may be difficult due to the smooth valley

VII - Discussion Maximum angle of rotation



vs. maximum angle of rotation.

• Maximum angle of rotation : $\Theta = \max_t \left\{ \theta(t) \right\} = \frac{A}{\pi St}$

Observations

No drag reduction possible near natural frequency

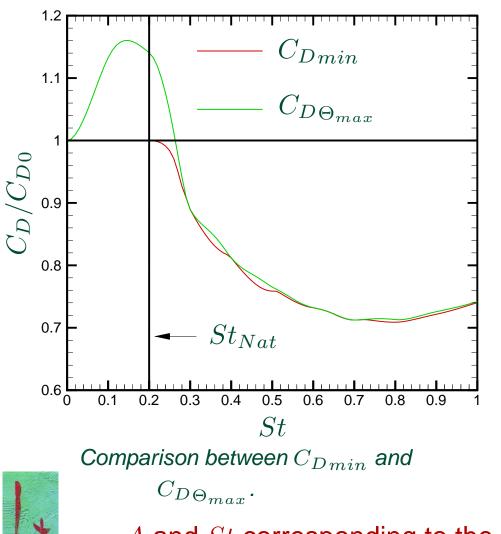
► Maximum drag reduction around $\Theta_{max} = 95^{\circ}$

 \hookrightarrow For all frequencies g.t. natural frequency

 \hookrightarrow Minimum drag :

$$C_D = 0.71 \times C_{D0} = 0.98$$

Existence of an "optimal" maximum angle of rotation Θ_{max} .



Notations

$$C_{D\min}(St) = \min_{A \in \mathbb{R}} C_D(\Theta, St)$$
$$C_{D\Theta_{\max}}(St) = C_D(\Theta_{\max}, St)$$

Observations

Good agreements between C_{Dmin} and $C_{D\Theta_{max}}$ for $St > St_{Nat}$

 $\blacktriangleright \Theta_{max}$ is not optimal for St < St_{Nat}

A and St corresponding to the minimal drag seems dependent : $A/St = 5.2 \ (\Theta_{max} = 95^{\circ}).$

POD ROM control law does not correspond to the global minimum

 \hookrightarrow POD ROM parameters : A = 2.2 and St = 0.53 ($\Theta = 76^{\circ}$) $\Rightarrow C_D = 1.04$

 $\hookrightarrow \text{Global minimum parameters} : A = 4.4 \text{ and } St = 0.76$ ($\Theta = 105^{\circ} \neq \Theta_{max} = 95^{\circ}$) $\Rightarrow C_D = 0.98$

▶ Results in (A, St) quite different but not so far in terms of C_D

 \hookrightarrow The smooth valley is reached

Improvement : coupling to the POD ROM approach an efficient new optimization algorithm for smooth fonctions

 \hookrightarrow Take results obtained by POD ROM as initial conditions

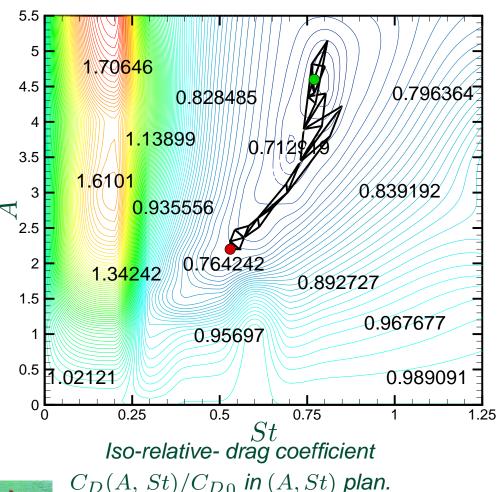
Advantages

- Numerical simplicities
- Adaptive topology
- Gradients calculations not necessary
- Good results with smooth functions

Drawbacks

- ► No proof of optimality for simplex dimensions greater than two
- Need to fix free parameters

Maybe more iterations than gradient based optimisation algorithms...



Observations

Topology adaptation function of the curve of the valley

► Minimum found by Nelder-Mead simplex method : A = 4.5 and $St = 0.76 \Rightarrow \Theta = 108^{\circ}$ \hookrightarrow Seems to be the global minimum

▶ 30 NSE resolutions $\Rightarrow 5\%$ additive drag reduction compared to POD ROM

Relative drag reduction by POD ROM : 25% (1 NSE resolution) Usefulness of coupling a new algorithm?

Conclusions

- Important drag reduction obtained by POD ROM : more than 25% of relative drag reduction
- This solution is not the global minimum of the drag function
- POD ROM compared to NSE ⇒ important reduction of numerical costs :
 - \hookrightarrow Reduction factor of the calculus : 100
 - \hookrightarrow Reduction factor of the memory storage : 600

"OPTIMAL" CONTROL OF 3D FLOWS POSSIBLE BY POD ROM

- Existence of an optimal maximum angle of rotation for effective drag reduction, $\Theta_{max}=95^\circ$
- Coupling POD ROM with the Nelder-Mead simplex method leads a priori to the global minimum of the drag function

 But the gain on the drag function is quite small compared to result obtained by POD ROM

Perspectives

Improve the representativity of the POD ROM

 \hookrightarrow "Optimize" the temporal excitation γ_e \hookrightarrow Mix snapshots corresponding to different dynamics (temporal excitations)

- Look for harmonic control $\gamma(t) = A \sin(2\pi S_t t)$ with POD basis reactualization (closed loop on NSE and not only on POD ROM)
- Coupling the POD ROM approach with Trust Region Methods (TRPOD)

 \implies proof of convergence under weak conditions

- Introducing the pressure into the POD dynamical system
 - \hookrightarrow pressure contribution to drag coefficient : 80%

Optimal control of the Navier-Stokes equations

