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I - Configuration and numerical method

Two dimensional flow around a
circular cylinder at Re = 200
Viscous, incompressible and

Newtonian fluid
Cylinder oscillation with a tan-

gential velocity γ(t)
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Fractional step method in time
Finite Element Method (FEM)

in space (P1)

I Numerical code written by M.Braza
(IMFT-EMT2) & D.Ruiz (ENSEEIHT)
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I - Configuration and numerical method

Iso pressure at t = 100.
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Aerodynamic coefficients.

Iso vorticity at t = 100.

Authors St CD

Braza et al. (1986) 0.2000 1.4000

Henderson et al. (1997) 0.1971 1.3412

He et al. (2000) 0.1978 1.3560

this study 0.1983 1.3972

Strouhal number and drag coefficient.
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II - Optimal control Definition

Mathematical method allowing to determine without a priori knowledge
a control law based on the optimization of a cost functional.

State equations F(φ, c) = 0 ;
(Navier-Stokes + I.C. + B.C.)

Control variables c ;
(Blowing/suction, design parameters ...)

Cost functional J (φ, c).
(Drag, lift, target function, ...)

Find a control law c and state variables φ such that the cost functional
J (φ, c) reach an extremum under the constraint F(φ, c) = 0.
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II - Optimal control Lagrange multipliers

Constrained optimization ⇒ unconstrained optimization

I Introduction of Lagrange multipliers ξ (adjoint variables).

I Lagrange functional :

L(φ, c, ξ) = J (φ, c)− < F(φ, c), ξ >

I Force L to be stationary ⇒ look for δL = 0 :

δL =
∂L

∂φ
δφ +

∂L

∂c
δc +

∂L

∂ξ
δξ = 0

I Hypothesis : φ, c and ξ assumed to be independent of each other :

∂L

∂φ
δφ =

∂L

∂c
δc =

∂L

∂ξ
δξ = 0
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II - Optimal control Optimality system

I State equations (
∂L

∂ξ
δξ = 0) :

F(φ, c) = 0

I Co-state (adjoint) equations (
∂L

∂φ
δφ = 0) :

(

∂F

∂φ

)∗

ξ =

(

∂J

∂φ

)∗

I Optimality condition (
∂L

∂c
δc = 0) :

(

∂J

∂c

)∗

=

(

∂F

∂c

)∗

ξ

⇒ Expensive method in CPU time and storage memory for large system !

⇒ Ensure only a local (generally not global) minimum
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II - Optimal control Reduced Order Model (ROM)

"without an inexpensive method for reducing the cost of flow
computation, it is unlikely that the solution of optimization problems
involving the three dimensional unsteady Navier-Stokes system will
become routine"

M. Gunzburger, 2000

x∆

Initialization

Optimization

Optimization on simplified model

a(x), grad a(x)

f(x), grad f(x)

Recourse to detailed model (TRPOD)
High−fidelity model

Approximation model
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II - Proper Orthogonal Decomposition (POD)

I Introduced in fluid mechanics (turbulence context) by Lumley (1967).

I Look for a realization φ(X) which is closer, in an average sense, to
the realizations u(X). (X = (x, t) ∈ D = Ω × R

+)

I φ(X) solution of the problem : max
φ

〈|(u, φ|2〉 s.t. ‖φ‖2 = 1.

I Snapshots method, Sirovich (1987) :
∫

T

C(t, t′)a(n)(t′) dt′ = λ(n)a(n)(t).

I Optimal convergence L2 norm (energy) of φ(X)
⇒ Dynamical order reduction is possible.

I Decomposition of the velocity field :

u(x, t) =

NP OD
∑

i=1

a(i)(t)φ(i)(x).
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III - Reduced Order Model of the cylinder wake (ROM)

I Galerkin projection of NSE on the POD basis :

(

φ(i),
∂u

∂t
+ (u · ∇)u

)

=

(

φ(i), −∇p +
1

Re
∆u

)

.

I Integration by parts (Green’s formula) leads :

(

φ(i),
∂u

∂t
+ (u · ∇)u

)

=
(

p, ∇ · φ(i)
)

−
1

Re

(

(∇ ⊗ φ(i))T , ∇ ⊗ u
)

− [p φ(i)] +
1

Re
[(∇ ⊗ u)φ(i)].

with [a] =

∫

Γ

a · n dΓ and (A, B) =

∫

Ω

A : B dΩ =
∑

i, j

∫

Ω

AijBji dΩ.

Optimal rotary control of the cylinder wake using POD reduced order model – p. 10/30



III - Reduced Order Model of the cylinder wake (ROM)

I Velocity decomposition with NPOD modes :

u(x, t) = um(x) + γ(t) uc(x) +

NP OD
∑

k=1

a(k)(t)φ(k)(x).

I Reduced order dynamical system where only Ngal (� NPOD) modes
are retained (state equations) :







































d a(i)(t)

d t
=Ai +

Ngal
∑

j=1

Bij a(j)(t) +

Ngal
∑

j=1

Ngal
∑

k=1

Cijk a(j)(t)a(k)(t)

+ Di

d γ

d t
+



Ei +

Ngal
∑

j=1

Fij a(j)(t)



 γ + Giγ
2

a(i)(0) = (u(x, 0), φ(i)(x)).

Ai, Bij , Cijk, Di, Ei, Fij and Gi depend on φ, um, uc and Re.
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IV - Reduced Order Model of the cylinder wake Stabilization

Integration and "optimal" stabilization of the POD ROM for
γ = A sin(2πStt), A = 2 and St = 0.5.

POD reconstruction errors ⇒ temporal modes amplification

0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

PSfrag replacements

a
(n

)

time units
Temporal evolution of the first 6 POD

temporal modes.

I Causes :

Extraction by POD only of the
large energetic eddies

Dissipation takes place in small
eddies

I Solution :

Addition of an optimal artificial
viscosity on each POD mode

projection (Navier-Stokes)
prediction before stabilization (POD ROM)
prediction after stabilization (POD ROM).
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IV - Reduced Order Model of the cylinder wake Stabilization
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Comparison of absolute errors.

I Good agreements between POD ROM spectrum and DNS spectrum
I Reduction of the reconstruction error between predicted (POD ROM)
and projected (DNS) modes

⇒ Validation of the POD ROM
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V - Optimal control formulation based on ROM

I Objective functional :

J (a, γ(t)) =

∫ T

0

J(a, γ(t)) dt =

∫ T

0





Ngal
∑

i=1

a(i)2 +
α

2
γ(t)2



 dt.

α : regularization parameter (penalization).

I Co-state equations :














d ξ(i)(t)

dt
= −

Ngal
∑

j=1



Bji + γ Fji +

Ngal
∑

k=1

(Cjik + Cjki) a(k)



 ξ(j)(t) − 2a(i)

ξ(i)(T ) = 0.

I Optimality condition (gradient) :

δγ(t) = −

Ngal
∑

i=1

Di

dξ(i)

dt
+

Ngal
∑

i=1



Ei +

Ngal
∑

j=1

Fija
(j) + 2Giγ(t)



 ξ(i) + αγ.
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V - Optimal control formulation based on ROM

I γ(0)(t) done ; for n = 0, 1, 2, ... and while a convergence criterium is
not satisfied, do :

1. From t = 0 to t = T solve the state equations with γ(n)(t) ;
↪→ state variables a(n)(t)

2. From t = T to t = 0 solve the co-state equations with a(n)(t) ;
↪→ co-state variables ξ(n)(t)

3. Solve the optimality condition with a(n)(t) and ξ(n)(t) ;
↪→ objective gradient δγ(n)(t)

4. New control law ↪→ γ(n+1)(t) = γ(n)(t) + ω(n) δγ(n)(t)

I End do.
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VI - Closed loop results Generalities

I No reactualization of the POD basis.

I The energetic representativity is a priori different to the dynamical
one :

↪→ possible inconvenient for control,

↪→ a POD dynamical system represents a priori only the dynamics (and
its vicinity) used to build the low dynamical model.

I Construction of a POD basis representative of a large range of
dynamics :

↪→excitation of a great number of degrees of freedom scanning γ(t) in
amplitudes and frequencies.
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VI - Closed loop results Excitation
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γe(t) = A1 sin(2πSt1 t) × sin(2πSt2 t − A2 sin(2πSt3 t))

with A1 = 4, A2 = 18, St1 = 1/120, St2 = 1/3 and St3 = 1/60.

I 0 ≤ amplitudes ≤ 4 and Fourier analysis ⇒ 0 ≤ frequencies ≤ 0.65

I γe initial control law in the iterative process.
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VI - Closed loop results Energy
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I Stationary cylinder γ = 0 : ↪→ 2 modes out of 100 are sufficient to
restore 97% of the kinetic energy.

I Controlled cylinder γ = γe : ↪→ 40 modes out of 100 are then
necessary to restore 97% of the kinetic energy

⇒ Improvement of the POD ROM robustness to dynamical evolutions.
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VI - Closed loop results Optimal control
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I Reduction of the wake instationarity. γopt ' A sin(2πStt) with A = 2.2
and St = 0.53

J (γe) = 9.81 =⇒ J (γopt) = 5.63.

I The control is optimal for the reduced order model based on POD.

I Is it also optimal for the Navier-Stokes model ?
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VI - Closed loop results Comparison of wakes’ organization

I No mathematical proof concerning the Navier Stokes optimality.

no control γ = 0 optimal control γ = γopt

Isocontours of vorticity ωz .

I no control : γ = 0 ⇒ Asymmetric flow.
↪→ Large and energetic eddies.

I optimal control : γ = γopt ⇒ Symmetrization of the (near) wake.
↪→ Smaller and lower energetic eddies.
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VI - Closed loop results Aerodynamic coefficients
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I Important drag reduction :
CD0 = 1.40 for γ = 0 and CD = 1.04 for γ = γopt

CD/CD0 = 0.74 ⇒ more than 25%.

I Decrease of the lift amplitude :
CL = 0.68 for γ = 0 and CL = 0.13 for γ = γopt.

Optimal rotary control of the cylinder wake using POD reduced order model – p. 21/30



VI - Closed loop results Numerical costs

I Optimal control of NSE by He et al. (2000) :
↪→ harmonic control law with A = 3 and St = 0.75.

⇒ 30% drag reduction.

I Optimal control POD ROM (this study) :
↪→ harmonic control law with A = 2.2 and St = 0.53.

⇒ 25% drag reduction.

Less energetic costs (greater energetic gain ?)

Reduction costs using POD ROM compared to NSE :
calculus time : 100
Memory storage : 600

↪→ "Optimal" control of 3D flows becomes possible !
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VII - Discussion Numerical experimentation
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A

St
Iso-relative- drag coefficient

CD(A, St)/CD0 in (A, St) plan.

Observations

I Minimum is located in a smooth
valley

↪→ Global minimum :
around A = 4.4 and St = 0.76

I Maximum is located in a sharp
peak

↪→ Global maximum :
near St = 0.2, the natural frequency :
lock-on flow

Finding the global minimum with an optimization algorithm
may be difficult due to the smooth valley
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VII - Discussion Maximum angle of rotation
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vs. maximum angle of rotation.

I Maximum angle of rotation :

Θ = maxt {θ(t)} =
A

πSt

Observations

I No drag reduction possible near
natural frequency

I Maximum drag reduction around
Θmax = 95◦

↪→ For all frequencies g.t. natural fre-
quency
↪→ Minimum drag :
CD = 0.71 × CD0 = 0.98

Existence of an "optimal" maximum angle of rotation Θmax.
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VII - Discussions Maximum angle of rotation
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Comparison between CDmin and
CDΘmax

.

Notations

CDmin(St) = min
A∈R

CD(Θ, St)

CDΘmax
(St) = CD(Θmax, St)

Observations

I Good agreements between
CDmin and CDΘmax

for St > StNat

I Θmax is not optimal for St <
StNat

A and St corresponding to the minimal drag seems dependent :
A/St = 5.2 (Θmax = 95◦).
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VII - Discussion

I POD ROM control law does not correspond to the global minimum

↪→ POD ROM parameters : A = 2.2 and St = 0.53 (Θ = 76◦)
⇒ CD = 1.04

↪→ Global minimum parameters : A = 4.4 and St = 0.76
(Θ = 105◦ 6= Θmax = 95◦)

⇒ CD = 0.98

I Results in (A, St) quite different but not so far in terms of CD

↪→ The smooth valley is reached

I Improvement : coupling to the POD ROM approach an efficient new
optimization algorithm for smooth fonctions

↪→ Take results obtained by POD ROM as initial conditions
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VIII - Nelder-Mead Simplex method Generalities

Advantages

I Numerical simplicities

I Adaptive topology

I Gradients calculations not necessary

I Good results with smooth functions

Drawbacks

I No proof of optimality for simplex dimensions greater than two

I Need to fix free parameters

I Maybe more iterations than gradient based optimisation algorithms...
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VIII - Nelder-Mead Simplex method Results
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Iso-relative- drag coefficient

CD(A, St)/CD0 in (A, St) plan.

Observations

I Topology adaptation function of
the curve of the valley

I Minimum found by Nelder-Mead
simplex method :
A = 4.5 and St = 0.76 ⇒ Θ = 108◦

↪→ Seems to be the global mini-
mum

I 30 NSE resolutions ⇒ 5% ad-
ditive drag reduction compared to
POD ROM

Relative drag reduction by POD ROM : 25% (1 NSE resolution)
Usefulness of coupling a new algorithm ?
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Conclusions

Important drag reduction obtained by POD ROM : more than 25% of
relative drag reduction

This solution is not the global minimum of the drag function

POD ROM compared to NSE ⇒ important reduction of numerical
costs :
↪→ Reduction factor of the calculus : 100
↪→ Reduction factor of the memory storage : 600

"OPTIMAL" CONTROL OF 3D FLOWS POSSIBLE BY POD ROM

Existence of an optimal maximum angle of rotation for effective drag
reduction, Θmax = 95◦

Coupling POD ROM with the Nelder-Mead simplex method leads a

priori to the global minimum of the drag function

But the gain on the drag function is quite small compared to result
obtained by POD ROM
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Perspectives

Improve the representativity of the POD ROM

↪→ "Optimize" the temporal excitation γe

↪→ Mix snapshots corresponding to different dynamics (temporal
excitations)

Look for harmonic control γ(t) = A sin(2π St t) with POD basis
reactualization (closed loop on NSE and not only on POD ROM)

Coupling the POD ROM approach with Trust Region Methods
(TRPOD)

=⇒ proof of convergence under weak conditions

Introducing the pressure into the POD dynamical system

↪→ pressure contribution to drag coefficient : 80%

Optimal control of the Navier-Stokes equations
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