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I - Configuration and numerical method

Two dimensional flow
around a circular cylinder
at Re = 200
Viscous, incompressible

and Newtonian fluid
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I - Configuration and numerical method

Iso pressure at t = 100.
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Aerodynamic coefficients.

Iso vorticity at t = 100.

Authors St CD

Braza et al. (1986) 0.2000 1.4000

Henderson et al. (1997) 0.1971 1.3412

He et al. (2000) 0.1978 1.3560

this study 0.1983 1.3972

Strouhal number and drag coefficient.
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II - Proper Orthogonal Decomposition (POD)

I Introduced in fluid mechanics (turbulence context) by Lumley (1967).

I Look for a realization φ(X) which is closer, in an average sense, to
the realizations u(X). (X = (x, t) ∈ D = Ω × R

+)

I φ(X) solution of the problem : max
φ

〈|(u, φ)|2〉

‖φ‖2
.

I Snapshots method, Sirovich (1987) :
∫

T

C(t, t′)a(n)(t′) dt′ = λ(n)a(n)(t).

I Optimal convergence L2 norm (energy) of φ(X)
⇒ Dynamical order reduction is possible.

I Decomposition of the velocity field :

u(x, t) =

NP OD
∑

i=1

a(i)(t)φ(i)(x).
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III - Reduced Order Model of the cylinder wake (ROM)

I Galerkin projection of NSE on the POD basis :

(

φ(i),
∂u

∂t
+ (u · ∇)u

)

=

(

φ(i), −∇p +
1

Re
∆u

)

.

I Integration by parts (Green’s formula) leads :

(

φ(i),
∂u

∂t
+ (u · ∇)u

)

=
(

p, ∇ · φ(i)
)

−
1

Re

(

(∇ ⊗ φ(i))T , ∇ ⊗ u
)

− [p φ(i)] +
1

Re
[(∇ ⊗ u)φ(i)].

with [a] =

∫

Γ

a · n dΓ and (A, B) =

∫

Ω

A : B dΩ =
∑

i, j

∫

Ω

AijBji dΩ.
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III - Reduced Order Model of the cylinder wake (ROM)

I Velocity decomposition with NPOD modes :

u(x, t) = um(x) + γ(t) uc(x) +

NP OD
∑

k=1

a(k)(t)φ(k)(x).

I Reduced order dynamical system where only Ngal (� NPOD) modes
are retained (state equations) :







































d a(i)(t)

d t
=Ai +

Ngal
∑

j=1

Bij a(j)(t) +

Ngal
∑

j=1

Ngal
∑

k=1

Cijk a(j)(t)a(k)(t)

+ Di

d γ

d t
+



Ei +

Ngal
∑

j=1

Fij a(j)(t)



 γ + Giγ
2

a(i)(0) = (u(x, 0), φ(i)(x)).

Ai, Bij , Cijk, Di, Ei, Fij and Gi depend on φ, um, uc and Re.
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III - Reduced Order Model of the cylinder wake (ROM) Stabilization

Integration and (optimal) stabilization of the reduced order dynamical
system with γ = A sin(2πStt), A = 2 and St = 0, 5.
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IV - Optimal control formulation based on reduced order model

I Objective functional :

J (a, γ(t)) =

∫ T

0

J(a, γ(t)) dt =

∫ T

0





Ngal
∑

i=1

a(i)2 +
α

2
γ(t)2



 dt.

α : regularization parameter (penalization).

I Adjoint equations :














d ξ(i)(t)

dt
= −

Ngal
∑

j=1



Bji + γ Fji +

Ngal
∑

k=1

(Cjik + Cjki) a(k)



 ξ(j)(t) − 2a(i)

ξ(i)(T ) = 0.

I Optimality condition (gradient) :

δγ(t) = −

Ngal
∑

i=1

Di

dξ(i)

dt
+

Ngal
∑

i=1



Ei +

Ngal
∑

j=1

Fija
(j) + 2Giγ(t)



 ξ(i) + αγ.
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IV - Optimal control formulation based on reduced order model

I γ(0)(t) done ; for n = 0, 1, 2, ... and while a convergence criterium is
not satisfied, do :

1. From t = 0 to t = T solve the state equations with γ(n)(t) ;
↪→ state variables a(n)(t)

2. From t = T to t = 0 solve the adjoint equations with a(n)(t) ;
↪→ adjoint variables ξ(n)(t)

3. Solve the optimality condition with a(n)(t) and ξ(n)(t) ;
↪→ objective gradient δγ(n)(t)

4. New control law ↪→ γ(n+1)(t) = γ(n)(t) + ω(n) δγ(n)(t)

I End do.
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V - Closed loop resultsGeneralities

I No reactualization of the POD basis.

I The energetic representativity is a priori different to the dynamical
one :

↪→ possible inconvenient for control,

↪→ a POD dynamical system represents a priori only the dynamics (and
its vicinity) used to build the low dynamical model.

I Construction of a POD basis representative of a large range of
dynamics :

↪→excitation of a great number of degrees of freedom scanning γ(t) in
amplitudes and frequencies.
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V - Closed loop resultsExcitation
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I γ = 0 :
↪→ 2 modes out of 100 are sufficient to represent 97% of the

kinetic energy.

I γ = γe :
↪→ 30 modes out of 100 are then necessary to represent 97%

of the kinetic energy.
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V - Closed loop resultsOptimal control
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I Reduction of the wake instationarity. γopt ' A sin(2πStt) with A = 2.2
and St = 0.53

J (γe) = 9.81 =⇒ J (γopt) = 5.63.

I The control is optimal for the reduced order model based on POD.

I Is it also optimal for the Navier Stokes model ?
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V - Closed loop resultsComparison of wakes’ organization

I No mathematical proof concerning the Navier Stokes optimality.

a) no control γ = 0 b) optimal control γ = γopt

Isocontours of vorticity ωz.

I no control : γ = 0 ⇒ Asymmetrical flow.
↪→ Large and energetic eddies.

I optimal control : γ = γopt ⇒ Symmetrization of the (near) wake.
↪→ Smaller and lower energetic eddies.
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V - Closed loop resultsAerodynamic coefficients
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I Very consequent drag reduction :
CD = 1.40 for γ = 0 et CD = 1.06 for γ = γopt (more than 25%).

I Decrease of the lift amplitude :
CL = 0.68 for γ = 0 et CL = 0.13 for γ = γopt.
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Conclusions and perspectives

I Conclusions

Significative drag reduction minimizing the wake instationnarity of
the ROM.
Numerical costs (CPU and memory) negligible.

I Perspectives

Improve the representativity of the low order model.
↪→ "Optimize" the temporal excitation γe,
↪→ Mix snapshots corresponding to several differents dynamics
(temporal excitations).

Look for harmonic control γ(t) = A sin(2π St t) with POD basis
reactualization.
Couple this optimal system with trust region methods (TRPOD)
=⇒ proof of convergence.
Couple pressure with the POD dynamical system.

Optimal control of the Navier Stokes equations.
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