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# Prototype configuration of separated flow

#» Experimental study of Tokumaru and Dimotakis (JFM
1991)Re = 15000
» Unforced flow
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Two dimensional flow around a circular cylinder at Re = 200
Viscous, incompressible and Newtonian fluid
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Cylinder oscillation with a tangential velocity ~(t)

sup

Control parameter :

at) = () _ RO(t)  Tangential velocity
 Us U,  Upstream velocity




# Fractional step method in time (pressure correction)
# Finite Element Method (FEM) in space (Py, P;)
» Numerical domain Q = {-10<x <20; -10<y <10}; D=1
Mesh : 25042 triangles, 12686 vertices

» Numerical code written by M.Braza (IMFT-EMT2) & D.Ruiz (ENSEEIHT)
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time units
Aerodynamic coefficients.

Iso vorticity at ¢ = 100.

Authors St Cp
Braza et al. (1986) 0.2000 | 1.4000
Henderson et al. (1997) | 0.1971 | 1.3412
He et al. (2000) 0.1978 | 1.3560
this study 0.1983 | 1.3972

Strouhal number and drag coefficient.




Mathematical method allowing to determine without a priori knowledge
a control law based on the optimization of a cost functional.

# State equations F(¢,c) =0;
(Navier-Stokes + I.C. + B.C.)

# Control variables c;
(Blowing/suction, design parameters ...)

# Cost functional J (¢, c).
(Drag, lift, target function, ...)




Constrained optimization = unconstrained optimization
» Introduction of Lagrange multipliers £ (adjoint variables).
» Lagrange functional :

L(},c,§) = T(p,¢c)— < F(¢,¢), &>

» Force L to be stationary = look for 6L =0 :

oL oL . OL
0L = 5500+ 5 de+ 5206 =0

» Hypothesis : ¢, c and £ assumed to be independent of each other :

oL oL oL

where

oL — lim L(x+ edx) — L(x)

=0 Véx (Fréchet derivative)
ox e—0 €
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» Co-state (adjoint) equations (g—;w =0):

(5) = ()

» Optimality condition (g—f& =0):

0T\ _ (9FY",
dc ~ \ Oc
= Expensive method in CPU time and storage memory for large system!

Bewley et al. (2000) : 10® grid points
= Ensure only a local (generally not global) minimum

» State equations ( =0):|F(p,c) =0




» (O given; for n = 0, 1,2, ... and while a convergence criterium is not
satisfied, do :

1. Fromt = 0tot = T solve the state equations with ¢(™ ;
— state variables ¢(™

2. Fromt = T to t = 0 solve the co-state equations with ¢(™) ;
— co-state variables ¢(")

3. Solve the optimality condition with ¢(™) and £(™) ;
— objective gradient 6¢(™

4. New control law — ¢(*t1) = ¢(n) 1 ,(n) §e(n)

» End do.




"without an inexpensive method for reducing the cost of flow
computation, it is unlikely that the solution of optimization problems
involving the three dimensional unsteady Navier-Stokes system will

become routine"

Initialization

High—fidelity model

-

M. Gunzburger, 2000

Recourse to detailed model (TRPOD)

Approximation model

a(x), grad a(i()

-

Optimization

Optimization on simplified model

Ax




» Introduced in fluid mechanics (turbulence context) by Lumley (1967).

» Look for a realization ¢(X) which is closer, in an average sense, to
the realizations u(X). (X = (z,t) €e D = Q x R™)

» ¢(X) solution of the problem : m£X<|(u, oI*) st || =1.

» Snapshots method, Sirovich (1987) :

/ C(t,ta™ (") dt = XM a™ (1),
T

» Optimal convergence L? norm (energy) of ¢(X)
= Dynamical order reduction is possible.

» Decomposition of the velocity field :

Npop

u(x,t) = Z o () ().




First POD mode. Second POD mode.

Third POD mode. Fourth POD mode.




» Galerkin projection of NSE on the POD basis :

(i) 3_U , (6 1
(qb + (u V)u) — (qb , —Vp+ ReAu).

» Integration by parts (Green’s formula) leads :

(qb(” 8—u+(u V)u ) (p. V- 6") = — ((V®¢(”) Vou)
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» Velocity decomposition with Npop modes :

Npop

w(®@, t) = up (@) + () uc(@) + Y ()M (@).

» Reduced order dynamical system where only Ny, (< Npop) modes
are retained (state equations) :

Ngal gal Ngal

(2) (¢
dadt( ) =A; + Z Bi; a9 (t) + Z ZC 1w aP (t)a® (1)
j=1 j=1 k=1
d Ngal
i . - ql9) 2
—I—Dzdt—l- SZ—I—;]:ZJCLJ(?S) v+ Gy

a(0) = (u(z, 0), " (x)).

Ai, Bij, Cijk, Di, &, Fi; and G; depend on ¢, u,,,, u. and Re.




Integration and "optimal" stabilization of the POD ROM for
v = Asin(2wS;t), A=2and S; = 0.5.
POD reconstruction errors = temporal modes amplification

» Reasons:

# Extraction by POD only of the
large energetic eddies

# Dissipation takes place in small
eddies

» Solution ;

Y S NN <A # Addition of an optimal artificial

time units . .
Temporal evolution of the first 6 POD viscosity on each POD mode

temporal modes.

projection (Navier-Stokes)
prediction before stabilization (POD ROM)
prediction after stabilization (POD ROM).
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! ! | ! ! ! ! | ! !
POD modes m&ex POD modes index
Comparison of energetic spectrum. Comparison of absolute errors.

» Good agreements between POD ROM spectrum and DNS spectrum
» Reduction of the reconstruction error between predicted (POD ROM)
and projected (DNS) modes

= Validation of the POD ROM




» Objective functional :
T T 9 o
Tar®) = [ Ta®yi= [ 300+ G2 |
0 0 :

« . regularization parameter (penalization).

» Co-state equations :

d S(Z) (t) Rl Ngal | |
dt - Z Bji + '7-7:]@ + Z (Cﬂk —+ C]k:z) a(k) f(])(t) _ 2a(z)
j=1 k=1
¢0(T) = 0.

» Optimality condition (gradient) :




» No reactualization of the POD basis.

» The energetic representativity is a priori different to the dynamical
one :

— possible inconvenient for control,

— a POD dynamical system represents a priori only the dynamics (and
its vicinity) used to build the low dynamical model.

» Construction of a POD basis representative of a large range of
dynamics :

—excitation of a great number of degrees of freedom scanning y(¢) in
amplitudes and frequencies.
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time units Sy

Ye(t) = A1 sin(2wSs t) X sin(2w Syt — Ao sin(2wSi5t))
with A; = 4, A5 = 18, Stl — 1/120, Stg = 1/3 and Stg — 1/60

» 0 < amplitudes < 4 and Fourier analysis = 0 < frequencies < 0.65

» 7. initial control law in the iterative process.
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» Stationary cylinder v = 0 : — 2 modes out of 100 are sufficient to
restore 97% of the kinetic energy.

» Controlled cylinder v = ~, : — 40 modes out of 100 are then
necessary to restore 97% of the kinetic energy

= Improvement of the POD ROM robustness to dynamical evolutions.
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» Reduction of the wake instationarity. v,,; ~ Asin(27St) with A = 2.2
and S; = 0.53

T(ve) =9.81 = T (Yopt) = 5.63.

» Is it also optimal for the Navier-Stokes model ?




» No mathematical proof concerning the Navier Stokes optimality.

no control v = 0 optimal control v = v, pt
Isocontours of vorticity w..

» no control : v = 0 = Asymmetric flow.
— Large and energetic eddies.

» optimal control : v = ~,,: = Symmetrization of the (near) wake.
— Smaller and lower energetic eddies.
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time units time units

» Important drag reduction :
Cpo =1.40fory=0and Cp = 1.04 for v = ~yopt
Cp/Cpy = 0.74 = more than 25%.

» Decrease of the lift amplitude :
Cr =0.68fory=0and Cr = 0.13 for v = yp¢.




» Optimal control of NSE by He et al. (2000) :
— harmonic control law with A = 3 and S; = 0.75.
= 30% drag reduction.

» Optimal control POD ROM (this study) :
— harmonic control law with A = 2.2 and S; = 0.53.
= 25% drag reduction.

# Reduction costs using POD ROM compared to NSE :
s CPU time : 100
s Memory storage : 600

— "Optimal" control of 3D flows becomes possible!

» Does the POD ROM control law correspond to the global minimum ?




Observations

» Minimum is located in a smooth
valley

< Global minimum :

around A = 4.4 and St = 0.76

\ ~ 4 » Maximum is located in a sharp
1F . 0967677 1 peak
o5k nw——/) \\————— A
SH.02121 . 0.989091 7 - ,
0 R IQT///F+I/ \\ [ 0|918?Oxg:|1- : - GlObaI maximum
0 0.25 0.5 ) 0.75 1 125 near St = 0.2, the natural frequency :
Iso-relative- drag coefficient lock-on flow

Cp(A, St)/Cpgin (A, St) plan.

Finding the global minimum with an optimization algorithm
may be difficult due to the smooth valley




» POD ROM control law does not correspond to the global minimum

— POD ROM parameters : A =2.2and St =0.53 = Cp = 1.04

— Global minimum parameters : A = 4.4 and St = 0.76 = Cp = 0.98
» Results in (A, St) quite different but not so far in terms of Cp

— The smooth valley is reached

» Improvement : coupling to the POD ROM approach an efficient new
optimization algorithm for smooth fonctions

— Take results obtained by POD ROM as initial conditions




Advantages

» Numerical simplicities
» Adaptive topology
» Free gradient optimization method

» Good results with smooth functions
Drawbacks

» No proof of optimality for simplex dimensions greater than two
» Need to fix free parameters

» Maybe more iterations than gradient based optimisation algorithms.
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Iso-relative- drag coefficient
Cp(A, St)/Cpgin (A, St) plan.
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Relative drag reduction by POD ROM : 25% (1 NSE resolution)
Usefulness of coupling a new algorithm ?

Observations

» Topology adaptation function of
the curve of the valley

» Minimum found by the simplex
method :

A=4.5and St =0.76
— Seems to be the global mini-
mum

» 30 NSE resolutions = 5% ad-
ditive drag reduction compared to
POD ROM
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Important drag reduction obtained by POD ROM : more than 25% of
relative drag reduction

This solution is not the global minimum of the drag function

POD ROM compared to NSE = important reduction of numerical
costs :

— Reduction factor of the CPU time : 100

— Reduction factor of the memory storage : 600

"OPTIMAL" CONTROL OF 3D FLOWS POSSIBLE BY POD ROM

Coupling POD ROM with the Nelder-Mead simplex method leads a
priori to the global minimum of the drag function

But the gain on the drag function is quite small (5%) compared to
results obtained by POD ROM




# Improve the representativity of the POD ROM

— "Optimize" the temporal excitation ~,

— Mix snapshots corresponding to different dynamics (temporal
excitations)

— Introduction of shift-mode ?

# Look for harmonic control v(t) = Asin(27 S; t) with POD basis
reactualization (closed loop on NSE and not only on POD ROM)

# Coupling the POD ROM approach with Trust Region POD method
(TRPOD)
— proof of convergence under weak conditions

# Introducing the pressure into the POD dynamical system

<— pressure contribution to drag coefficient : 80%

# Optimal control of the Navier-Stokes equations
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