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Introduction

The theory of complex multiplication takes its origins in the beginning of the twentieth cen-
tury with the study of elliptic curves having an endomorphism ring strictly larger than Z, by
mathematicians like Kronecker, Deuring and Hasse, whom we now recognise as being among
the founders of class field theory. The goal was primarily to get explicit class field construc-
tions for some number fields, aiming at what became known as Kronecker’s Jugendtraum: a
partial answer to Hilbert’s 12th problem, asking for a generalisation of the Kronecker-Weber
theorem. Elliptic curves with complex multiplication indeed provide a complete solution to
this problem for quadratic imaginary fields. After some serious breakthroughs in algebraic ge-
ometry, and in particular in the theory of abelian varieties, by Weil, Shimura and Taniyama,
these results could be generalised to abelian varieties of higher dimensions ([3],[4]). This
led to the construction of some explicit finite abelian extensions of a type of number fields
called CM-fields. Though the answers it has given to Hilbert’s 12th problem until now are far
from being complete, complex multiplication has become a theory of its own, widely studied
because of its important role in other fields of number theory like Shimura varieties.

In this essay, after giving an overview of the theory for elliptic curves to motivate the
introduction of the additional technicalities that are needed for Shimura’s theorem, we are
going to focus on the theory of complex multiplication of abelian varieties, the main goal being
the proof of the main theorem of complex multiplication over the reflex field. It describes how
an abelian variety with complex multiplication behaves under the action of an automorphism
σ of C fixing a field called the reflex field. Such an abelian variety together with some
polarisation is indeed characterised up to isomorphism by a set of objects we will call its
type, and the following theorem gives the type of Aσ in terms of it using a map called the
reflex norm. Moreover, the second part of the theorem gives a reinterpretation of the action
of σ on the torsion points of A.

Theorem 0.1 Let (K,Φ) be a CM-type and P = (A, ι, C) a polarised abelian variety of
type (K,Φ, a, τ) with respect to an isomorphism ξ : Cn/u(a) −→ A. Fix σ ∈ Aut(C/K ′)
and choose s ∈ A∗K such that σ|K′ab = [s,K ′]. Then there is a unique complex analytic
isomorphism

ξ′ : Cn/u(NΦ(s)−1a) −→ Aσ

having the following properties:

(1) Pσ is of type (K,Φ, NΦ(s)−1a, N((s))τ) with respect to ξ′.

(2) There is a commutative diagram

K/a

ξ◦u
��

NΦ(s)−1

// K/NΦ(s)−1a

ξ′◦u
��

A
σ // Aσ

The field K ′ occurring in the statement is called the reflex field of K. This theorem describes
the reciprocity map

A∗K′ −→ Gal(K ′ab/K ′)

and we will be able to prove that the field of moduli of (A, ι, C) is an abelian extension of K ′

and to compute the corresponding subgroup of A∗K′ . The second part of the theorem will be
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important to show that other abelian extensions of K ′ are obtained using torsion points of A
and to give the corresponding subgroups.

Outline of the essay: Section 1 is an introductory section, reviewing some results from the
theory of complex multiplication of elliptic curves and motivating what follows. Section 2 is a
recall of basic facts, mainly on abelian varieties and on class field theory. Section 3 is crucial
for the understanding of Theorem 0.1, containing all important definitions and preliminary
constructions leading to the statement and proof of it. Among other things, we are going
to define CM-fields, the type of an abelian variety and the reflex norm, as well as classify
abelian varieties with complex multiplication in terms of these notions. Section 4 contains the
theorem itself, with a detailed sketch of the proof. Finally, Section 5 shows how the theorem
can be used to construct class fields of CM-fields, relating them to fields of moduli of certain
abelian varieties.

Sources: Most of the results and proofs in this essay come from Shimura’s book Abelian
varieties with complex multiplication ([3]). For the review of the elliptic curves case, I equally
used Silverman’s account in [5] and Shimura’s in [4]. Some light modifications in the state-
ments and proofs, as well as subsection 3.3 and the classifications in subsections 3.4 and 3.5
were inspired by Milne’s Complex multiplication ([2]).

Acknowledgments: I thank Prof. A.J. Scholl for setting this essay, giving me useful advice
and answering my questions.

Notations and conventions. Fields are always commutative. Rings are assumed to have
a unit, and homomorphisms of rings are required to map units to units. For every x ∈ C,
the complex conjugate of x is denoted x̄. The action of an algebraic automorphism σ is on
the right: the image of x by σ is written xσ, and xσ1σ2 = (xσ1)σ2 . This notation, though
sometimes quite confusing, will help us to distinguish them from analytic actions and therefore
will stress the importance of the link the main theorem of complex multiplications creates
between them. For an algebraic variety V , V σ denotes the variety obtained by applying σ to
the coefficients of the equations defining V .

A number field is a finite extension of Q. We write NK/Q(x), TrK/Q for the norm and
trace of an element of K, and N(a) for the norm of an ideal a of K. An étale algebra over
a field k is a finite product of finite separable field extensions of k. In particular, an étale
Q-algebra is a finite product of number fields. If W = K1× . . .×Kr is an étale Q-algebra, we
define its ring of integers to be OW = OK1 × . . .×OKr . For an element x ∈W , we sometimes
write x = (x1, . . . , xr) where xi ∈ Ki for all i. By a fractional ideal in W we will understand
a product a1 × . . . × ar ⊂ W such that ai is a fractional ideal of Ki of all i. Equivalently, it
is an additive subgroup a ⊂ W such that OW a ⊂ a. We say that a is an integral ideal if a
moreover is contained in OW . We define the norm of a, N(a), to be the product of the norms
of the ai. We define also for all x = (x1, . . . , xr) ∈ E,

TrW/Q(x) = TrK1/Q(x1) + . . .+ TrKr/Q(xr).
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1 A quick review of the elliptic curves case

This section is very sketchy as most of the results stated here will be proven later in the more
general abelian varieties case. It is mainly meant to play an introductory role and to serve as
a basis to explain what is needed for the generalisation. Let E be an elliptic curve over C.
Its equation can be chosen to be of the form y2 = x3 + Ax + B, and it is isomorphic to a
complex torus C/Λ where Λ is a lattice in C. The endomorphisms of E can through this
isomorphism be seen as complex analytic endomorphisms of C/Λ, which can be shown to be
exactly the C-linear maps α : C −→ C such that α(Λ) ⊂ Λ, and every such map is given by
multiplication by an element a ∈ C such that aΛ ⊂ Λ. Therefore,

End(E) ∼= {a ∈ C| aΛ ⊂ Λ} ⊂ C. (1)

We know that Z ⊂ End(E), as multiplication by n is a non-torsion element of End(E) for
every integer n. A short computation using (1) shows that End(E), as well as Λ, are contained
in a quadratic imaginary field K, so that in the case where End(E) 6= Z, End(E) is an order
in K, namely the order of the lattice Λ. In particular, if End(E) = OK , Λ is a fractional
ideal in K. The torsion points in E correspond through the isomorphism E ∼= C/a to the
Z-submodule K/a: more precisely, if m > 0 is an integer the m-torsion points of E correspond
to the submodule m−1a/a.

Referring to 4.1 for the definition of the multiplication by an idele map, we can state the
main theorem of complex multiplication for elliptic curves:

Theorem 1.1 (Main theorem of complex multiplication for elliptic curves) Fix the following
objects:

K a quadratic imaginary field

E an elliptic curve over C such that EndQ(E) ∼= K.

σ an automorphism of C over K

s ∈ A∗K an idele of K satisfying [s,K] = σ|Kab.

Fix moreover an isomorphism ξ : C/a −→ E where a is a lattice in K. Then there is a unique
complex analytic isomorphism ξ′ : C/s−1a −→ Eσ making the following diagram commute:

K/a

ξ

��

s−1
// K/s−1a

ξ′

��
E

σ // Eσ

This theorem gives us information on the reciprocity map A∗K −→ Gal(Kab/K). To de-
termine for example the class group corresponding to the field K(j) where j is the j−invariant
of E, take σ ∈ Gal(Kab/K(j)). Then E ∼= Eσ, so the lattices a and s−1a need to be homo-
thetic, that is, there exists α ∈ K such that a = αs−1a. The corresponding subgroup of A∗K
is therefore easily seen to be {s ∈ A∗K | ∃α ∈ K such that sa = αa}. In the same manner
we can determine the class groups corresponding to extensions containing j and some torsion
point of the elliptic curve, as stated in the following proposition.
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Proposition 1.2 Let K, E, a, ξ as in Theorem 1.1, and let h : E −→ E/Aut(E) ∼= P1 be a
Weber function for E. Let moreover w ∈ K/a, so that t = ξ(w) is a torsion point of E, and
define

T = {s ∈ A∗K | sa = a, sw = w}.

Then the field K(j, h(t)) is the class field of K corresponding to the subgroup K∗T of A∗K .

The Weber function used in this statement is necessary, as it can be seen that K(j, t) (meaning
that we adjoin to K(j) the x and y coordinates of the point t of the elliptic curve E) is
not an abelian extension of K(j). The Weber function enables us to eliminate some extra
automorphisms that make it non-abelian. For most elliptic curves (that is, when j 6= 0, 1728)
the automorphism group is {±1}, and h can simply be taken to be the x-coordinate function,
which eliminates the (x, y) 7→ (x,−y) automorphism of E.

Using the characterisation of the kernel of the reciprocity map, one even proves that
adjoining the j-invariant and torsion points is the only way to get abelian extensions of K,
that is, Kab is generated over K by the j-invariant j and all h(t) for all torsion points t ∈ E.
Moreover, K(j) is always Galois and Gal(K(j)/K) is isomorphic to the group of classes of
O-ideals. In particular, in the case where End(E) ∼= OK , it is isomorphic to the ideal class
group:

Theorem 1.3 Let K be a quadratic imaginary field, and let E be an elliptic curve such that
End(E) ∼= OK , j its j-invariant. Then K(j) is the Hilbert class field of K.

In the same way, the case where End(E) = OK also gives us a complete description of all ray
class fields of K: for c an integral ideal in K, denote by E[c] the c-torsion points of E, that
is,

E[c] = {t ∈ E | ct = 0 for all c ∈ c},

where ct denotes of course the image of t by the endomorphism of E associated to c through
End(E) ∼= OK .

Theorem 1.4 Let K be a quadratic imaginary field, E an elliptic curve such that End(E) ∼=
OK , j its j-invariant, c an integral ideal in K. Fix a Weber function h for E. Then
K(j, h(E[c])) is the ray class field of K modulo c.

As a conclusion, the main theorem of complex multiplication for elliptic curves is a powerful
tool for constructing class fields of a quadratic imaginary field. When used with an elliptic
curve whose endomorphism ring is the ring of integers OK , it even yields a description of the
ray class fields of K, obtained with the j-invariant and torsion points of this elliptic curve.

Changes that need to be made to generalise this to abelian varieties. The overall
approach stays the same: to a special kind of field K, we associate a geometric object A,
and generate class fields thanks to fields of moduli coming from this object, as well as torsion
points on this object. Let us state the major differences that nevertheless appear, as well as
some helpful similarities:

1. As in the elliptic curves case, the fields for which we will get results are sufficiently
large fields that can be embedded into EndQ(A) for A an abelian variety. It turns out
that such fields are totally imaginary quadratic extensions of totally real number fields.
They will be called CM-fields.
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2. Now, the way a CM-field K is embedded into EndQ(A) also has its importance. For a
quadratic imaginary field there are two possible embeddings that are complex conjugate
to each other, and one of them is chosen canonically using differential forms. Here there
will be 2n embeddings, and a particular choice Φ = {φ1, . . . , φn} of n of them such that
no two of them are equal or conjugate to each other will be called a CM-type. The
obtained results will depend on the chosen Φ.

3. Given a quadratic imaginary field K, it was sufficient to consider an elliptic curve with
complex multiplication by K. Now, there will be two fields involved: consider a CM-
field K and an abelian variety A with complex multiplication by K. Looking as in the
main theorem for elliptic curves at the action A −→ Aσ of an automorphism of C on A,
we will see that for A and Aσ to be isogenous, we will need σ to preserve the CM-type.
An essential difficulty lies then in the fact that at this condition σ doesn’t necessarily fix
K as in the elliptic curves case: it permutes the elements of Φ, so fixes a field generated
by all symmetric algebraic expressions involving values of the φi’s. This field will be
called the reflex field K ′, and will be the one for which we will be able to construct class
fields. Of course, K ′ = K for a quadratic imaginary field K.

4. For a quadratic imaginary field K, choosing a principal elliptic curve E with complex
multiplication by K (i.e. such that End(E) ∼= OK), unramified extensions of K are
obtained as subfields of K(jE). This is the field of moduli of (E, ι), where ι : K −→
EndQ(E) is the complex multiplication embedding. For a CM-field K, considering just a
principal abelian variety with complex multiplication by K won’t be sufficient, since an
abelian variety alone doesn’t define a field of moduli, having too many automorphisms.
Therefore, we will be always working with polarised abelian varieties (A, C), and the
unramified extension of K ′ we will get will be kA,ι,C , the field of moduli of the system
(A, ι, C) with ι : K −→ EndQ(A).

5. Ramified extensions of conductor dividing some integral ideal c ⊂ K ′ will then be
obtained, as in the quadratic imaginary case, by adding the images of c-torsion points
of a principal variety by a generalisation of the Weber function: again, the fact of having
a finite number of automorphisms, and so the polarisation, is important.

6. For a quadratic imaginary K we get a complete classification of all finite abelian exten-
sions of K. This is not the case for a general CM-field K: we will obtain some class
fields thanks to different choices of the CM-type Φ, but we won’t get all extensions.

7. Though all the above explanations are in terms of CM-fields for simplicity, as we will
see in subsection 3.3, the biggest commutative object that can be contained in EndQ(A)
for A with complex multiplication is in general not necessarily a CM-field, but a CM-
algebra, that is, a finite product of CM-fields. Therefore, to be completely general, we
will work with CM-algebras and not only CM-fields. Everything will generalise quite
easily by replacing K by a CM-algebra W : we will basically just need to take products
everywhere to extend our results.

The following comparative table is an attempt to sum these differences up:
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Initial data Quadratic imaginary field
K

CM-algebra W with CM-type Φ, in-
ducing reflex type (K ′,Φ′)

Associated geomet-
ric object

Elliptic curve E such that
EndQ(E) ∼= K

polarised abelian variety (A, C) with
ι : W ↪→ EndQ(A)

Reciprocity map de-
scribed by main the-
orem

A∗K −→ Gal(Kab/K) A∗K′ −→ Gal(K ′ab/K ′)

Obtained unramified
class fields for princi-
pal object

H = K(jE) field of moduli
of (E, ι)

Field of moduli of (A, ι, C)

Obtained rami-
fied class fields for
principal object

K(j, h(E[c])), h Weber
function

kA,ι,C(h(A[c])), h Kummer variety
quotient map

2 Preliminary definitions and properties

2.1 Some facts about abelian varieties

In this subsection we will recall without proof all the facts about abelian varieties that will be
used in this essay. By an abelian variety over a field k we will here mean a projective group
variety over k. The group law of an abelian variety is always commutative, and therefore
written additively. A fundamental fact for our purpose is the fact that a complex abelian
variety is isomorphic to a complex torus:

Fact 2.1 If A is an abelian variety of dimension n over C, it can be seen as a complex
manifold, and there is a complex analytic group isomorphism θ : A −→ Cn/Λ where Λ ⊂ Cn

is a lattice.

Recall that a free Z-module Λ ∈ Cn of rank 2n is called a lattice if Λ⊗R = Cn, or equivalently,
if Λ⊗Q is dense in Cn.

Remark When n = 1, this corresponds to the classical Uniformisation Theorem for elliptic
curves, the converse of which is also true: any complex torus of dimension one is isomorphic
to an elliptic curve. We will see below in the paragraph on polarisations that this is false for
higher-dimensional abelian varieties.

Homomorphisms and endomorphisms

Definition 2.2 Let A and B be abelian varieties. A homomorphism of A into B is a rational
map λ : A −→ B that is also a group homomorphism. If A = B, it is called an endomorphism.
If A and B have same dimension, λ is called an isogeny.

We will denote End(A) the ring of endomorphisms of the abelian variety A, and EndQ(A) =
End(A) ⊗ Q. If A and B have same dimension and if there is an isogeny from A into B,
there is also an isogeny from B into A, and A and B are then called isogenous. An isogeny,
being a rational map between varieties of same dimension, has finite kernel.

We can also consider homomorphisms from one abelian variety into the other from the
complex torus point of view. If λ : A −→ B is an isogeny, it induces a homomorphism
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Cn/Λ1 −→ Cn/Λ2 of complex tori, which in turn induces a linear map λ : Cn −→ Cn sending
the first lattice into the second, i.e. such that λ(Λ1) ⊂ Λ2. The evoked correspondences are
exact and can be summed up by saying there is a ring isomorphism:

Hom(A,B) ∼= {M ∈Mn(C)| MΛ1 ⊂ Λ2}.

In the same way, denoting by QΛ the Q-vector space Λ⊗Q, there is a Q-algebra isomorphism

HomQ(A,B) ∼= {M ∈Mn(C)| MQΛ1 ⊂ QΛ2}. (2)

The corresponding Q-algebra homomorphism EndQ(A) −→Mn(C) is sometimes (for exam-
ple in Shimura’s works [3],[4]) called the analytic representation of EndQ(A).

Polarisations A complex torus Cn/Λ of dimension n > 1 is not always a projective variety.
It does have a projective embedding if there exists an ample divisor on Cn/Λ, or, equivalently,
a Riemann form:

Definition 2.3 Let Λ be a lattice in Cn. An R-bilinear form E : Cn ×Cn −→ R is called a
Riemann form on Cn/Λ if it satisfies the following conditions:

(i) E(Λ× Λ) ⊂ Z;

(ii) E is alternating, i.e. E(z, w) = −E(w, z) for all z, w ∈ Cn.

(iii) The bilinear form (z, w) 7→ E(z,
√
−1w) is a symmetric positive definite form.

We say the complex torus Cn/Λ is polarised if there is a Riemann form on Cn/Λ. For an
abstract abelian variety without fixing any isomorphism with a complex torus, we can define
a polarisation in the following way:

Definition 2.4 A polarisation of A is a set C of divisors of A satisfying the following three
conditions:

(i) C contains an ample divisor;

(ii) If X and Y are elements of C, there are positive integers m,n such that mX is alge-
braically equivalent to nY .

(iii) C is maximal under the conditions (i) and (ii).

A polarised abelian variety is then a couple (A, C) where C is a polarisation of the abelian
variety A.

Remark: Let us stress that, under the definitions we have given, it is equivalent for an
abelian variety to be polarised or to have a Riemann form, but choosing a Riemann form on
it is not equivalent to choosing a polarisation.

A homomorphism λ : (A1, C1) −→ (A2, C2) of polarised abelian varieties is a homomor-
phism λ : A1 −→ A2 such that λ−1C2 = C1. There is a divisor X0 ∈ C such that every X ∈ C
is algebraically equivalent to mX0 for some positive integer m. X0 is called the basic polar
divisor of C.

Let us go back now to the case where A is defined over C, and choose an isomorphism
ξ : Cn/Λ −→ A, through which every divisor X on A defines a divisor ξ−1(X) on the complex
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torus. Then condition (i) of the previous definition is equivalent to the fact that every divisor
X ∈ C determines a Riemann form. We mean by this that every such divisor X gives a
divisor ξ−1(X) on the torus, that is the divisor of some theta-function, which in turn gives a
Riemann form.

A polarisation C of the abelian variety A defines an involution (that is, an antiauto-
morphism of order 1 or 2) on EndQ(A) in the following way: choose any Riemann form E
determined by a divisor in C. Then, identifying for simplicity EndQ(A) with a subalgebra of
Mn(C), E gives an involution γ of EndQ(A) by

E(λx, y) = E(x, λγy)

for every λ ∈ EndQ(A). It can be proven that this involution is independent of the choice
of E, of the torus Cn/Λ and of the isomorphism ξ. It is therefore called the involution of
EndQ(A) determined by C.

2.2 Idelic formulation of class field theory

Let F be an algebraic number field and MF the set of places of F . Denote

A∗F =

(xv)v ∈
∏

v∈MF

F ∗v | xv ∈ O∗F,v for almost all v


the idele group of F . Choose a normalised valuation vp on every Fp. For an idele s ∈ A∗F ,
define

(s) =
∏

p prime of F

pordpsp

the ideal associated to s. Class field theory states that there exists a surjective homomorphism

A∗F −→ Gal(F ab/F )
s 7→ [s, F ]

called the reciprocity map, such that for every finite abelian extension L/F of conductor cL/F
and for every idele s whose ideal (s) is divisible only by primes unramified in L,

[s, F ]|L = ((s), L/F ),

where ( · , L/F ) : IF (cL/F ) −→ Gal(L/F ) is the Artin map for the extension L/F . In par-
ticular, let p be a prime of F , L an abelian extension of F unramified at p, and $ =
(. . . , 1, $p, 1, . . .) an idele such that $p is a uniformiser in Fp, and that $q = 1 for q 6= p.
Then ($) = p, and therefore [$,F ]|L = (p, L/F ) is the Frobenius element for L/F at p.
For any integral ideal c in F , put

U(c) =
{
s ∈ A∗F | sp ∈ O∗F,p and sp ≡ 1 (mod cOF,p) for all primes p in F

}
.

When several fields are involved, we will write UF (c). Moreover, if c = (c) is a principal
ideal, we will write U(c) instead of U((c)). The results of class field theory are essential to us
mostly for the sake of the following result, which states that F ∗U(c) is exactly the class group
corresponding to the ray class field Fc of F modulo c and therefore enables us to perform a
crucial decomposition in the proof of the main theorem of complex multiplication.
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Fact 2.5 (Idelic characterisation of ray class fields) There is an isomorphism

A∗F /F
∗U(c) −→ Gal(Fc/F ).

In other words, an idele s acting trivially on Fc can be written s = ce where c ∈ F ∗ and
e ∈ U(c).

2.3 Lattices in étale algebras

Let W = K1 × . . . × Kr be an étale algebra of dimension d over Q. This section gives a
collection of results about a type of object that will be in constant use throughout the essay.

Definition 2.6 A lattice in a number field is a free Z-submodule of maximal rank. A lattice
in W is a product a = a1 × . . .× ar such that for all i, ai is a lattice in Ki.

Lemma 2.7 Let a and b be two lattices in W . Then there exists an integer m such that
ma ⊂ b.

Proof. Let e1, . . . , ed (resp. f1, . . . , fd) be a Z-basis of a (resp. of b). Then e1, . . . , ed
and f1, . . . , fd are both bases of the Q-vector space W . Therefore for every i there are
ai1, . . . , aij ∈ Q such that

ei = ai1f1 + . . .+ aidfd.

Taking m to be a common multiple of the denominators of all the aij , we get mei ∈ b for
all i, so ma ⊂ b. �

Definition 2.8 An order in W is a subring of W that is also a lattice.

To any lattice a in W we can associate an order in the following way:

O = {α ∈W | αa ⊂ a}.

It is clear that O is a Z-submodule and a subring of W , so it suffices to check that QO = W .
But W = Qa since a is a lattice. Therefore for every x ∈W and every a ∈ a, xa ∈W = Qa,
so xa ⊂ Qa, so x ∈ QO.
a is said to be an ideal for an order O if Oa ⊂ a. In particular, a is an ideal for the order
associated to it. The best-known example of this kind of situation is the case of the maximal
order of W , the ring of integers OW . Its ideals are by definition the fractional ideals of W .
The terminology ”maximal order” comes from the fact that it contains all other orders in W .

Lemma 2.9 The product ab of two lattices in W is again a lattice.

Proof. ab is clearly a Z-submodule of W . Let O be the order associated to a. Then by Lemma
2.7, there are integers m,n > 0 such that mO ⊂ b and nb ⊂ O. Thus, ma ⊂ ab ⊂ 1

na, so a is
free by the second inclusion, and of rank d by the first. �

3 Abelian varieties with complex multiplication

3.1 CM-fields and CM-types

Definition 3.1 A CM-field K is a totally imaginary quadratic extension of a totally real
quadratic field. In other words, it is of the form K = K0(

√
α) where K0 is a totally real field,

that is, a number field whose embeddings into C are all real and α ∈ K0 is mapped through
each of these embeddings to a negative real.
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Example: Imaginary quadratic fields are clearly CM-fields. A cyclotomic field Q(ζ) for a
primitive m-th root of unity ζ with m > 2 is totally imaginary, and is a quadratic extension
of the totally real field Q(ζ + ζ̄), so is a CM-field as well.

We can characterise CM-fields intrinsically without using generators thanks to the follow-
ing lemma:

Lemma 3.2 A number field K is a CM-field if and only if the following two conditions are
satisfied:

(i) Complex conjugation induces a non-trivial automorphism of K

(ii) Every embedding of K ↪→ C commutes with complex conjugation.

Proof. For the if part, use the definition to write any element z of K as z = x +
√
αy

with x, y in the totally real field K0 (in particular, x, y and α are real, and α < 0 ). Then
z̄ = x −

√
αy ∈ K and condition (i) is clearly satisfied. Take an embedding σ : K ↪→ C.

Then xσ and yσ are real and (
√
α)σ is a square root of the negative real ασ, so is quadratic

imaginary. Therefore we have

zσ = xσ + (
√
α)σyσ = xσ − (

√
α)σyσ = z̄σ,

which proves condition (ii).
Assume now K is a number field satisfying conditions (i) and (ii). Let K0 be the subfield

of K fixed by complex conjugation. It contains Q and is a proper subfield of K according to
condition (i). Complex conjugation being of order two, K is an extension of degree 2 of K0,
and, completing the square, we can write it as K0(

√
α) for some α in K0. Let σ : K0 ↪→ C

be an embedding. Then by condition (ii) and by definition of K0, for any x ∈ K0,

xσ = x̄σ = xσ,

which shows K0 is totally real. Moreover, extending σ to an embedding of K into C,
((
√
α) σ)

2
= ασ = α. If, for some σ, α is nonnegative,

√
α
σ

will be real. But then by

condition (ii) (
√
α) σ = (

√
α)σ =

(√
α
)σ

, and thus
√
α is real, which contradicts condition

(i) and proves the second implication. �
The following lemma is a direct consequence of this criterion:

Lemma 3.3 A composite of CM-fields is a CM-field.

Proof. Clear, as any embedding of a composite of number fields into C induces embeddings
of these fields. �
Another consequence is:

Lemma 3.4 The Galois closure of a CM-field is a CM-field.

Proof. Let K be a CM-field and L its Galois closure. As L clearly satisfies condition (i)
of Lemma 3.2, we only need to check condition (ii). We can write K = Q(α1) and L =
Q(α1, . . . , αr) where α1, α2, . . . , αr are all roots of the minimal polynomial of α1. For every i,
there is an embedding φi : K ↪→ C sending α1 to αi. For every σ ∈ Gal(L/Q) and for every
i = 1, . . . , r, applying condition (ii) for the embeddings φiσ and φi of K,

ασi = αφiσ1 = α1
φiσ = αφi1

σ = αi
σ,
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which proves condition (ii) on L. �
The set of complex embeddings of a CM-field can by definition be split into pairs {φ, φ̄}.

We will call a choice of exactly one element of each of these pairs a CM-type:

Definition 3.5 A CM-type Φ = {φ1, . . . , φn} on a CM-field K is a set of complex embeddings
of K such that Φ ∩ Φ = ∅ and Φ ∪ Φ (where Φ = {φ1, . . . , φn}) is the set of all complex
embeddings of K.

Remark:

1. Another way of saying this is that the elements of Φ induce exactly all the distinct
archimedean valuations on K.

2. We will call both the set Φ alone and the pair (K,Φ) a CM-type.

Definition 3.6 We define the determinant and the trace of the CM-type Φ for every x ∈ K
by

det Φ(x) =

n∏
i=1

xφi , tr Φ(x) =

n∑
i=1

xφi .

CM-algebras. We will also need the more general notion of a CM-algebra:

Definition 3.7 A CM-algebra is a product K1 × . . .×Kr of finitely many CM-fields Ki.

Note that in particular a CM-algebra is always commutative, and that it is an étale algebra.
We can associate to a CM-algebra E a set Φ called the CM-type by simply taking Φ =
Φ1× . . .×Φr where the Φi are CM-types of the fields Ki: every element φ ∈ Φ is of the form
(φ1, . . . , φn) where φi ∈ Φi and for all x = (x1, . . . , xr) ∈ E, φ(x) =

∑r
i=1 φi(xi). We can also

define tr Φ(x) =
∑r

i=1 tr Φi(xi) for all x = (x1, . . . , xr) ∈ E.

3.2 The reflex field

Let (K,Φ) be a CM-type. We are going to associate to it another CM-type, called the reflex
of (K,Φ). First, let us define the underlying field:

Definition 3.8 The reflex field of K with respect to the CM-type Φ is defined to be the field
K ′ generated over Q by tr Φ(x) for all x ∈ K, i.e.:

K ′ = Q
(
{tr Φ(x)}x∈K

)
= Q

({
n∑
i=1

xφi

}
x∈K

)
.

We are going to use the criterion of Lemma 3.2 to prove K ′ is a CM-field. First of all, it is a
finite extension of Q because it is clearly contained in the Galois closure of K. By condition
(ii) of the lemma for K, tr Φ(x) = tr Φ(x̄) for all x ∈ K, so complex conjugation induces an
automorphism on K ′. Independence of characters and the fact that Φ is a CM-type imply
this automorphism is non-trivial, which proves condition (i). Now if we take σ ∈ Aut(C),
using condition (ii) for K twice, first for the embeddings φiσ, then for the embeddings φi,

tr Φ(x)σ =
n∑
i=1

xφiσ =
n∑
i=1

x̄φiσ =
n∑
i=1

xφi σ =
(

tr Φ(x)
)σ
.
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This proves condition (ii) for K ′. Thus, K ′ is a CM-field.
To define the reflex type, we are going to give another characterisation of K ′, in terms of

Galois theory. Let L be the Galois closure of K and G its Galois group. As remarked above,
we have K ′ ⊂ L. Denote by H and H ′ respectively the subgroups of G corresponding to K
and K ′.

L

K K ′

Q

{1}

H H ′

G

Extend every φi to an element of G, again denoted φi. Every element of G, restricted to K,
must coincide with some element of Φ ∪ Φ̄. Therefore, putting S = ∪ni=1Hφi,

G =
n⋃
i=1

Hφi ∪
n⋃
i=1

Hφi = S ∪ S̄ and S ∩ S̄ = ∅. (3)

Proposition 3.9 Let G, H, H ′, S be as above. Then

H ′ = {g ∈ G | Sg = S}. (4)

Proof. The ⊃ inclusion comes easily from the definition of K ′ as field generated by the tr Φ(x).
For the other direction, an element g of H ′ satisfies

n∑
i=1

xφig =

n∑
i=1

xφi

for every x ∈ K, which by independence of characters forces Sg = S. �

Remark This proposition enables us to understand the reflex field of K as the field gen-
erated by all symmetric polynomial expressions in aφ1 , . . . , aφn for all a ∈ K. Indeed, if f is
a symmetric polynomial in n variables, then for every σ ∈ H ′ and every a ∈ K, σ performs
a permutation on aφ1 , . . . , aφn , and therefore leaves f(aφ1 , . . . , aφn) invariant, which implies
f(aφ1 , . . . , aφn) ∈ K ′. The other inclusion is given by the definition of the reflex field as the
field generated by all

∑n
i=1 a

φi .
The proposition implies H ′ = {g ∈ G | gS−1 = S−1} where S−1 = {σ−1 | σ ∈ S}. The

elements of S−1 induce a family of distinct embeddings ψ1, . . . , ψm of K ′ into C. Again, for
every ψi we choose an element of S inducing ψi on K ′ and also call it ψi. Therefore, using
what we just observed,

S−1 ⊂
m⋃
i=1

H ′ψi ⊂ H ′S−1 ⊂ S−1, so S−1 =

m⋃
i=1

H ′ψi.

According to Lemma 3.4, L is a CM-field and complex conjugation commutes with all elements
of G, so by (3),

G = S−1 ∪ S−1 and S−1 ∩ S−1 = ∅,

13



which ensures that ψ1, . . . , ψm, ψ1, . . . , ψm are all distinct embeddings of K ′ into C. Thus
[K ′ : Q] = [G : H ′] = 2m and {ψ1, . . . , ψm} is a CM-type Φ′ on K ′. The CM-type (K ′,Φ′)
is called the reflex type of (K,Φ). As seen from the construction, Φ′ corresponds to the
restrictions to K ′ of the inverses of the elements of Φ, viewed as elements of the Galois group
of the Galois closure of K.

Special case: Consider a CM-type (K,Φ) with K Galois. Then we can take K = L above,
and K ′ ⊂ K. The elements φi of Φ can be considered as elements of the Galois group
Gal(K/Q), and S = {φ1, . . . , φn}, S′ = {φ−1

1 , . . . , φ−1
n }. In the particular case where K is

quadratic imaginary, we get K = K ′.

The reflex field of a CM-algebra. Let now W ∼=
∏r
i=1Ki be a CM-algebra, Φi a CM-type

for every Ki, and (K ′i,Φ
′
i) the reflex of (Ki,Φi) for all i. Denote by K ′ the composite K ′1 . . .K

′
r.

It is a CM-field by Lemma 3.3. Then K ′ will be called the reflex field of (W,Φ =
∏r
i=1 Φi).

Note that it is generated by tr Φi(xi) for all xi ∈ Ki, so actually it is generated by tr Φ(x) for
all x ∈W .

The reflex norm. Let us go back to the case of a CM-field K. We already have a group
homomorphism

NΦ = det Φ′ : K ′ −→ C
x 7−→

∏n
i=1 x

ψi

Every h ∈ H stabilises K, so hS = S, so S−1h = S−1. Therefore, h ◦NΦ = NΦ, so actually
the image of NΦ is inside K. The map NΦ : K ′∗ −→ K∗ is called the reflex norm. For the
formulation of the main theorem of complex multiplication in the adelic language, we are
going to need it to be defined on A∗K′ .

Proposition 3.10 NΦ can be extended to a homomorphism

NΦ : A∗K′ −→ A∗K .

Proof. The idea is to decompose our map NΦ : K ′ −→ K into a linear map K ′ −→Mm(K),
easily extendable, and a determinant map. Write K ′ = Q(b) with b ∈ K′. The coefficients of
the polynomial P (x) =

∏m
j=1(x− bψj ) are symmetric functions in bψ1 , . . . , bψm , and therefore

lie in K. We can then choose a matrix M ∈ Mm(K) whose characteristic polynomial is P .
Note that this matrix is conjugate to the matrix bψ1

. . .

bψm

 ∈Mm(L),

which we could have chosen directly had K been Galois. Define then a Q-linear algebra
homomorphism f : K ′ −→ Mm(K) by f(b) = M . For any a =

∑2m−1
k=0 akb

k ∈ K ′ with
ak ∈ Q, we get that f(a) =

∑2m−1
k=0 akM

k is conjugate to
∑2m−1

k=0 ak(b
ψ1)k

. . . ∑2m−1
k=0 ak(b

ψm)k

 =

 aψ1

. . .

aψm

 ,
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and therefore det f(a) = NΦ(a), so NΦ = det ◦f . Now f can be extended Qv-linearly to
K ′v = K ′⊗Qv for v a place in Q, and thus it is well-defined on AK′ , with values inMm(AK).
Composing it with the determinant map, we get NΦ : AK′ −→ AK . Note that in particular
we have extended the ψj ’s to embeddings of K ′v into Lv and NΦ to a map K ′v −→ Kv. Using
these maps, for an idele s, NΦ(s) is exactly what could be expected:

NΦ(s) = (NΦ(sv))v =

 m∏
j=1

sψi
v


v

.

In particular, we get a homomorphism NΦ : A∗K′ −→ A∗K , as claimed. �

Remark. During the proof, we defined maps NΦ : K ′p −→ Kp for all rational primes p. NΦ

is constructed using algebraic embeddings, so it preserves algebraic integers: there are maps
NΦ : OK′,p −→ OK,p and NΦ : O∗K′,p −→ O∗K,p. Using this and the fact that for any number
field F ,

O∗F,p ∼=
∏
p|p

p prime of F

O∗F,p

we see that NΦ : A′∗K −→ A∗K induces also maps NΦ : UK′(c) −→ UK(c) for all integers c,
where UF (c) is defined as in 2.2. Finally, NΦ : A∗K′ −→ A∗K also passes to the quotient when
composed with the ideal map s −→ (s) and therefore induces a map NΦ : IK′ −→ IK on
ideals.

The reflex norm for CM-algebras. Let now W =
∏r
i=1Ki be a CM-algebra, with for

every Ki a CM-type Φi, and K ′ the reflex of (W,Φ =
∏r
i=1 Φi). Put AW =

∏r
i=1 AK and

A∗W =
∏r
i=1 A∗K . We then can generalise the reflex norm, defining a map NΦ : A∗K′ −→ A∗W

by

NΦ(x) =
(
NΦi(NK′/K′i

(x))
)r
i=1

.

3.3 Abelian varieties with complex multiplication

In this subsection we follow Milne ([2]). Define for any semi-simple algebra B over a field k,
with decomposition

∏
Bi into a product of simple algebras, its reduced degree by [B : k]red =∑

i[Bi : ki]
1
2 [ki : k], where, for all i, ki is the centre of Bi. The following lemma is proved by

comparing dimensions:

Lemma 3.11 Let B be a semi-simple algebra over a field k. For any faithful B-module M ,

dimkM ≥ [B, k]red,

and there exists a faithful module for which equality holds if and only if the simple factors
of B are matrix algebras over fields.

Let A ∼= Cn/Λ be an abelian variety. Then EndQ(A) is a semi-simple Q-algebra, and us-
ing (2), we see that QΛ is a faithful EndQ(A)-module: faithfulness comes from RΛ = Cn,
as this means that any C-linear morphism that is the identity on QΛ is the identity on all
of Cn. Applying Lemma 3.11 to QΛ, we get

2 dimA ≥ [EndQ(A) : Q]red. (5)
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Definition 3.12 We say that A has complex multiplication if

2 dimA = [EndQ(A) : Q]red. (6)

Note that in this case, according to Lemma 3.11, EndQ(A) is a product of matrix algebras. A
result from the theory of semi-simple algebras shows that (6) is equivalent to the existence of
an étale Q-subalgebra of dimension 2 dim(A). A is isogenous to a product

∏
iA

ni
i where Ai

are simple varieties, and then EndQ(A) ∼=
∏
iMni(Di) where, for every i, Di is the division

Q-algebra EndQ(Ai). In the case where A has complex multiplication, the Di must be number
fields of degree 2 dim(Ai). In particular, A has complex multiplication if and only if each of
its simple factors has complex multiplication, and if A is simple, it has complex multiplication
if and only if EndQ(A) is a number field of degree 2 dim(A). The following proposition gives
a more precise description of EndQ(A) for A with complex multiplication:

Proposition 3.13 (a) A simple abelian variety A has complex multiplication if and only if
EndQ(A) is a CM-field of degree 2 dim(A) over Q.

(b) An isotypic abelian variety A (that is, isogenous to An1
1 with A1 simple) has complex

multiplication if and only if EndQ(A) contains a number field of degree 2 dim(A) over Q,
which can be chosen to be a CM-field stable under the involution induced by some polari-
sation of A.

(c) An abelian variety A has complex multiplication if and only if EndQ(A) contains an étale
Q-algebra W of dimension 2 dim(A), which can be chosen to be a CM-algebra invariant
under the involution induced by some polarisation of A. We then say A has complex
multiplication by W .

We won’t prove this proposition: subsection 3.5 will provide the construction of a polarisation
inducing an involution stabilising the image of the number field K inside EndQ(A). The idea
in the number field case is then that any polarisation on A induces a positive involution on
EndQ(A) and that if it stabilises K, the latter is necessarily either totally real or a CM-
field. The first possibility can be excluded by proving that a subfield of maximal dimension
of EndQ(A) is always totally imaginary. The étale algebra case is then deduced easily by
decomposition. In what follows, as in the definitions in subsection 3.1, we will often restrict
to the CM-field case before generalising to CM-algebras: this most of the time doesn’t change
the core of the proofs but enables us to simplify notations.

3.4 CM-type associated to an abelian variety with complex multiplication

Fix an abelian variety with complex multiplication by a CM-field K and an embedding

ι : K −→ EndQ(A).

We are going to show how we can associate a CM-type (K,Φ) to the couple (A, ι). The
information about the type of (A, ι) is contained in the map ι and can be extracted by
performing a diagonalising change of basis. More precisely, the action of K on A induces an
action on the tangent space of A at 0, and we are going to find a basis of this space that
diagonalises this action. For this, fix a complex torus Cn/Λ isomorphic to A for some lattice
Λ ⊂ Cn: we will express this by means of the exact sequence

0 −→ Λ −→ Cn ξ−→ A −→ 0. (7)
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We are going to denote both the map Cn−→A from this exact sequence and the isomorphism
Cn/Λ ∼= A it induces by ξ, for convenience of notation. According to (2), each element of
EndQ(A) corresponds with respect to (7) to a linear transformation of Cn preserving QΛ.
Therefore, through ι, K acts faithfully linearly on Cn and we get an injective ring homomor-
phism

DΦ : K −→Mn(C).

K being commutative, up to change of basis we can assume that for every a ∈ K, DΦ(a) is a
diagonal matrix, of the form  aφ1

. . .

aφn

 .

By Q-linearity and faithfulness, {φ1, . . . , φn} is a CM-type for K. We say that (A, ι) is of
type (K,Φ).

We continue our investigation to deduce some other properties of (A, ι) with respect to
its type. QΛ is a Q-vector space of dimension 2n = [K : Q], and a K-module through DΦ.
Therefore, if we take a non-zero w ∈ QΛ, then QΛ ⊃ DΦ(K)w, and comparing dimensions,
QΛ = DΦ(K)w. Thus, with respect to our new basis, we have

QΛ =


 aφ1w1

...
aφnwn

 , a ∈ K

 ,

where w = (w1, . . . , wn) are the coordinates of w in this basis. We can optimise our chosen
basis further by noticing that none of the wi can be zero, since RΛ = Cn: our coordinate
system (z1, ..., zn) can therefore be replaced by (w−1

1 z1, . . . , w
−1
n zn). We finally get:

QΛ =


 aφ1

...
aφn

 , a ∈ K

 = uΦ(K),

where

uΦ(a) =

 aφ1

...
aφn

 = DΦ(a)

 1
...
1

 .

uΦ (or simply u) is a Q-linear isomorphism from K to QΛ. Extending it R-linearly, we get
an R-linear isomorphism u : K ⊗ R = KR −→ RΛ = Cn. Putting a = u−1(Λ) ⊂ K, this
gives rise to a commutative diagram with exact rows

0 // a //

��

KR
//

u

��

KR/a //

��

0

0 // Λ // Cn ξ // A // 0

.
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Generalisation to CM-algebras Let A be an abelian variety with complex multiplication
by a CM-algebra W = K1 × . . .×Kr through the embedding

ι : W −→ EndQ(A).

For every i, denote by ei the vector (0, . . . , 0, 1, 0, . . . , 0) ∈ K1 × . . .×Kr with a 1 in the i-th
position: it corresponds to the unit of the number field Ki contained in A. Then for every
ei there is an integer mi such that ι(miei) ∈ End(A). Put Ai = ι(miei)A for all i, so that
A is isogenous to A1 × . . . × Ar and ι induces embeddings ιi : Ki −→ EndQ(Ai). We have
[W : Q] = 2 dim(A) and [Ki : Q] ≤ 2 dim(Ai) for all i by (5), so actually [Ki : Q] = 2 dim(Ai)
and therefore Ai has complex multiplication by Ki for all i. Applying the above to every Ki,
we get CM-types Φi for each Ki, and therefore a CM-type Φ for W . We write also DΦ for
the diagonal map DΦ : W −→Mn(C), and note that

DΦ(a1, . . . , ar) = diag(Φ1(a1), . . . ,Φ(r(ar))

for CM-types Φi of the CM-fields Ki. Denoting by ui the isomorphisms u obtained thanks
to the CM-field case for every Ki, we define, for every a = (a1, . . . , ar) ∈ W , u(a) to be the
column vector

u(a) =

 u1(a1)
...

ur(ar)

 .

If ai is the lattice obtained for Ki, put a = a1 × . . . × ar, which is a lattice in W . Write
WR = W ⊗Q R. Using otherwise the same notations as above and taking the direct sum of
the diagrams for every Ki, u defines an isomorphism so that the following diagram with exact
rows commutes:

0 // a //

��

WR
//

u

��

WR/a //

��

0

0 // Λ // Cn ξ // A // 0

.

We have thus written A as WR/a with a lattice a in W . The action DΦ of W on A as the
complex torus Cn/Λ becomes the obvious multiplication action on A as the torus WR/a. In
the notation WR/a the torsion points of A correspond to W/a. In this situation, we will
sometimes say that A is of type (W,Φ, a) with respect to ξ, as a depends on the choice of ξ.
Note that if O = ι−1(EndA),

O = {α ∈W |DΦ(α)Λ ⊂ Λ} = {α ∈W |αa ⊂ a},

so O is the order of a and a is an ideal for O. In particular, when O = OW , a = a1 × . . .× ar
is such that ai is a fractional ideal of Ki for all i. In this case, we say (A, ι) is principal.

Classification of abelian varieties with complex multiplication. An isogeny µ :
(A1, ι1) −→ (A2, ι2) of abelian varieties with complex multiplication by W is an isogeny
µ : A1 −→ A2 such that for every a ∈W the diagram

A1
µ //

ι1(a)
��

A2

ι2(a)
��

A1
µ // A2
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commutes. We will sometimes write Hom((A1, ι1), (A2, ι2)) for the ring of these isogenies,
and HomQ((A1, ι1), (A2, ι2)) = Hom((A1, ι1), (A2, ι2))⊗Q.

Lemma 3.14 Let (A1, ι1) (resp. (A2, ι2)) be of type (W,Φ, a1) (resp. (W,Φ, a2)) with respect
to ξ1 (resp. ξ2). Let µ : (A1, ι1) −→ (A2, ι2) be an element of HomQ((A1, ι1), (A2, ι2)). Then
there is an element γ ∈W such that γa1 ⊂ a2 and such that the following diagram

W/a1
u //

γ

��

Cn/u(a1)
ξ1 //

DΦ(γ)

��

A1

µ

��
W/a2

u // Cn/u(a2)
ξ2 // A2

(where the map in the leftmost column is multiplication by γ) commutes.

Proof. µ induces a C-linear endomorphism (that we also call µ) of Cn such that µ(Qu(a1)) ⊂
Qu(a2). Therefore it induces a Q-linear map µ : Qu(a1) −→ Qu(a2). The spaces Qu(a1) and
Qu(a2) are both equal to u(W ), so µ comes from a Q-linear map ν = u−1 ◦µ ◦ u : W −→W .
In fact, ν is W -linear: indeed, µ commutes with ι1 and ι2, so it commutes with the action of
W on the varieties. Thus ν is multiplication by some element γ ∈ W , and µ coincides with
DΦ(γ). �

The following proposition shows that abelian varieties are classified by their CM-types up
to isogeny.

Proposition 3.15 Let (A1, ι1), (A2, ι2) be abelian varieties with complex multiplication by
W . (A1, ι1) and (A2, ι2) are isogenous if and only if they are of the same type (W,Φ).

Proof.

1. “Only if” part: Fix an isogeny µ from (A1, ι1) onto (A2, ι2). Then there is an isomor-
phism

EndQ(A1)
µ∗−→ EndQ(A2)

α 7−→ µ ◦ α ◦ µ−1

and a commutative diagram

W
ι1 //

ι2 ((

EndQ(A1)

µ∗

��
EndQ(A2)

Indeed, the commutativity of this diagram is equivalent to µ ◦ ι1(a) = ι2(a) ◦ µ for
all a ∈ W , which is true by definition of µ. Therefore for all a ∈ W , ι1(a) and ι2(a)
induce conjugate endomorphisms on Cn, which are codiagonalisable and have the same
diagonalisation, which means that the obtained CM-types are the same.

2. “If” part: Suppose (A1, ι1), (A2, ι2) are of types (W,Φ, a1) and (W,Φ, a2) with respect
to ξ1 and ξ2 respectively for some lattices a1, a2 ∈W . By Lemma 2.7 there is an integer
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d > 0 such that da1 ⊂ a2. Thus multiplication by d defines through the isomorphisms
ξ1, ξ2 an isogeny µ : A1 −→ A2 such that the following diagram

Cn/u(a1)
ξ1 //

d
��

A1

µ

��
Cn/u(a2)

ξ2 // A2

commutes. The fact that µ is actually an isogeny (A1, ι1) −→ (A2, ι2) is then checked
easily: for every x = ξ1(y) ∈ A1 and a ∈W ,

µ ◦ ι1(a)(x) = µ ◦ ξ1(DΦ(a)(y)) = ξ2(DΦ(a)dy) = ι2(a) ◦ ξ2(dy) = ι2(a) ◦ µ(x).

Note that Q-linearity of DΦ(a) is used at the second step. �

3.5 Type of a polarised abelian variety

As noticed at the end of the previous subsection, associating a CM-type to an abelian variety
with complex multiplication determines the isogeny class of this variety. At present, let (A, ι)
be of type (K,Φ) for a CM-field K and let C be a polarisation of A. We are going to define
for the polarised abelian variety (A, ι, C) a more precise notion of type that will characterise
it up to isomorphism.

The polarisation C must not be chosen at random. It has to be compatible with ι, that is,

ι(K)γ = ι(K),

where γ is the involution determined by C. This can be shown to be equivalent to the fact
that a Riemann form associated to any divisor in C is Φ-admissible, that is

E(DΦ(a)z, w) = E(z,DΦ(ā)w) for all z, w ∈ Cn/Λ and a ∈ K. (8)

We are now going to show that a polarisation of A compatible with ι always exists, by
constructing an explicit Φ-admissible Riemann form. For this, let us begin by studying Φ-
admissible forms more broadly and finding all necessary conditions on a Φ-admissible Riemann
form associated to some divisor of C with respect to the isomorphism ξ : Cn/Λ −→ A. Reading
E through u on elements of K, we are going to show E has to be of a very particular form,
and characterised entirely by a certain element τ ∈ K. Indeed, put f(a) = E(u(a), u(1)) for
every a ∈ K. E being a Riemann form, it is R-bilinear, Z-valued on Λ and Q-valued on QΛ.
Thus f is a Q-linear map of K into Q, and must therefore be of the form f(a) = TrK/Q(τa)
for some τ in K. Thanks to (8) we have then for all a, b ∈ K

E(u(a), u(b)) = E(u(a), DΦ(b)u(1)) = E(DΦ(b̄)a, u(1)) = E(u(b̄a), u(1)).

Thus, for all elements a, b ∈ K, E must be of the form

E(u(a), u(b)) = TrK/Q(τab̄). (9)

Moreover, E must be alternating, which forces τ̄ = −τ , i.e. τ is purely imaginary. K being
a CM-field, this implies

τφj = τ̄φj for j = 1, . . . , n. (10)
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We will now deduce from this a general expression for E on Cn, namely

E(z, w) =
n∑
j=1

τφj (zjwj − zjwj) for z, w ∈ Cn. (11)

Indeed, from TrK/Q =
∑n

j=1(φj + φj) and from (10) we see that (11) is true for z, w ∈ u(K).
The expression (11) is then obtained for all z, w ∈ Cn by continuity of E and density of u(K)
in Cn.

We haven’t yet derived any conditions from the fact that E(z,
√
−1w) is symmetric and

positive definite. Since

E(z,
√
−1w) = −

√
−1

n∑
i=1

τφj (zjwj + zjwj),

this is true if and only if
Im(τφj ) > 0 for j = 1, . . . , n.

In fact, the conditions we have found are necessary and sufficient, up to multiplication by
a positive integer, and can be summarised by the following proposition:

Proposition 3.16 Let (A, ι) be of type (K,Φ, a). Then

(i) Let τ ∈ K be such that τ = −τ and Im(τφj ) > 0 for j = 1, . . . , n. Let

E(z, w) =
n∑
j=1

τφj (zjwj − zjwj).

Then there is a positive integer d such that dE is a Φ-admissible non-degenerate Riemann
form on Cn/Φ(a).

(ii) Conversely, every Φ-admissible non-degenerate Riemann form on Cn/Φ(a) is obtained
from an element τ as in (i).

Proof. We have proven (ii) above, so it suffices to prove (i). E is clearly R-bilinear. The fact
that E is alternating and that E(z,

√
−1w) is symmetric definite positive is also easily seen

to be true from the above discussion. Checking it is Φ-admissible is an easy computation. It
remains to see that there exists an integer d > 0 such that dE(u(a)×u(a)) ⊂ Z, i.e., using (9),

TrK/Q(dτaā) ⊂ Z,

which is equivalent to dτaā ⊂ OK . But τaā is a lattice in K by Lemma 2.9, so such an integer
d exists. �

In particular, this proposition proves that Φ-admissible Riemann forms, and therefore
compatible polarisations, exist. Let (A, ι, C) be an abelian variety polarised with a compatible
polarisation. Then we can construct from it a CM-type (K,Φ), a lattice a in K and, using
the Riemann form determined by the basic polar divisor of C with respect to ξ (which will be
Φ-admissible), an element τ ∈ K satisfying

τ̄ = −τ and Im(τφj ) > 0 for j = 1, . . . , n. (12)
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Note that a and τ depend on the choice of ξ in (7). (A, ι, C) is said to be of type (K,Φ, a, τ)
with respect to ξ. The dependance of the type on the isomorphism ξ will be made more
explicit below.

Conversely, from a quadruple (K,Φ, a, τ) with (K,Φ) a CM-type, a a lattice in K and
τ ∈ K satisfying (12), we can construct some triple (AΦ, ιΦ, CΦ). Indeed, using the CM-
type Φ = {φ1, . . . , φn}, define u : K −→ Cn as above by

uΦ(a) =

 aφ1

...
aφn

 .

Then AΦ is defined to be the complex torus Cn/Λ with Λ = uΦ(a). ιΦ is recovered by defining
DΦ : K −→Mn(C) such that

DΦ(a) =

 aφ1

. . .

aφn


for every a ∈ K. DΦ(a) preserves uΦ(K) = QΛ and gives therefore an element ιΦ(a) ∈
EndQ(A). Linearity and injectivity of ιΦ follow easily from those of DΦ. Finally, define on
Cn the R-bilinear form E given by (11). Then by Proposition 3.16, there is an integer d > 0
such that dE is a Riemann form, giving a polarisation CΦ on AΦ.

Generalisation to CM-algebras. Let (A, ι) be an abelian variety of type (W,Φ) with
W = K1 × . . . × Kr a CM-algebra. We can construct a Φ-admissible Riemann form W on
Cn ×Cn, satisfying

E(u(x), u(y)) = TrW/Q(τxȳ) =

r∑
i=1

TrKi/Q(τixiyi)

for all x, y ∈ W , where τ = (τ1, . . . , τr) ∈ W is such that for every i, τi ∈ Ki satisfies (12).
We say that A is of type (W,Φ, a, τ). Conversely, every such type gives rise to a variety in
the same manner as above. In particular W induces Riemann forms Ei on Ki such that

Ei(ui(x), ui(y)) = TrKi/Q(τixȳ)

for all x, y ∈ Ki, and therefore compatible polarisations Ci on the Ki.
In what follows, when speaking of a polarised abelian variety (A, ι, C) with complex multipli-
cation, C will always be assumed compatible with ι.

Classification up to isomorphism It is natural to try to evaluate to which extent the
above two constructions are inverse one to the other. This will lead us to show abelian
varieties are classified by their types up to isomorphism. Let us write θ(A, ι, C) for the type
of the polarised abelian variety (A, ι, C) with complex multiplication and η(W,Φ, a, τ) for the
polarised abelian variety (AΦ, ιΦ, CΦ) associated to the type (W,Φ, a, τ) by the above inverse
construction. We will now study η ◦ θ and θ ◦ η.

Fix some triple (A, ι, C) and write θ(A, ι, C) = (W,Φ, a, τ). Then

η ◦ θ(A, ι, C) = (AΦ = Cn/u(a), ιΦ, CΦ)
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(AΦ, ιΦ) is by construction isomorphic to (A, ι) and has the same CM-type (W,Φ). By this
isomorphism, the associated Riemann form is invariant as τ already comes from a Riemann
form and needs no further multiplication by an integer, so (AΦ, ιΦ, CΦ) ∼= (A, ι, C).

On the other hand, let us fix a type (W,Φ, a, τ). Up to multiplication by an integer, we
can assume the associated Riemann form is E defined by (11). Then

η(W,Φ, a, τ) = (AΦ = Cn/u(a), ιΦ, CΦ)

and by construction θ ◦η(W,Φ, a, τ) = (W,Φ, a′, τ ′) for some lattice a′ ⊂W and some τ ′ ∈W
the components of which satisfy (12). As we have seen above, η◦θ(APhi, ιΦ, CΦ) is isomorphic
to (AΦ, ιΦ, CΦ), and so by Lemma 3.15 there is a γ ∈W such that this isomorphism is of the
form DΦ(γ). Then a′ = γa, and, writing E,E′ for the corresponding Riemann forms, for all
z, w ∈ Cn

E′(DΦ(γ)z,DΦ(γ)w) = E(z, w),

which read through u gives for all a, b ∈W

TrW/Q(τ ′γγ̄ab̄) = TrW/Q(τab̄),

which gives τ ′ = 1
γγ̄ τ .

In view of what we just obtained, let us define the following equivalence relation on types:

Definition 3.17 Two types (W,Φ, a1, τ1) and (W,Φ, a2, τ2) are equivalent1 if there is an el-
ement a ∈W such that

a1 = aa2 and τ1 = (aā)−1τ2.

Remark To be really precise, we should say that types are equivalent if the underlying
CM-algebras are isomorphic and the CM-types compatible under this isomorphism, instead
of just being the same, and express the condition on the lattices and the τ ’s in terms of this
isomorphism. As it is not really important for our purpose, we allow ourselves this little abuse
of definition.

We have thus proved the following classification:

Proposition 3.18 There is an exact correspondence

{isomorphism classes of triples (A, ι, C) } ←→ {equivalence classes of types (W,Φ, a, τ)}
(A, ι, C) θ7→ associated type (W,Φ, a, τ)

Let us moreover state here a result partly proven in the previous reasoning, explaining how
a change in the choice of ξ affects the type of the triple (A, ι, C).

Lemma 3.19 Let (A, ι, C) be of type (W,Φ, a, τ) with respect to ξ1. If ξ1 is replaced by
ξ2 = ξ1 ◦DΦ(a)−1 for some a ∈ W ∗, then (A, ι, C) is of type (W,Φ, aa, (aā)−1τ) with respect
to ξ2.

1This terminology is non-standard.
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Proof. The fact that the new associated lattice is aa is clear. Then the situation is shown by
the following diagram:

Cn/u(aa)
DΦ(a)−1

//

ξ2
))

Cn/u(a)

ξ1
��
A

Let E1 (resp. E2) be the Riemann form determined by the basic polar divisor of C with
respect to ξ1 (resp ξ2), and τ1 (resp.τ2) the associated elements of W . Then for all z, w ∈ Cn

and for all a ∈W ,
E1(DΦ(a)−1z,DΦ(a)−1w) = E2(z, w).

As above we get
TrW/Q(τ1a

−1xa−1y) = TrW/Q(τ2xȳ)

for all x, y, a ∈W . Therefore τ2 = (aā)−1τ1. �

4 The main theorem of complex multiplication

4.1 Multiplication by an idele

In order to state the main theorem of complex multiplication, we need to define one last thing:
the action of the group of ideles on torsion points. Let K be a number field, a ⊂ K a lattice
and t ∈ A∗K an idele. For each rational prime p, we write tp for the p-component of t in K∗p ,
and ap = a⊗Z Zp. Define moreover ta by putting ta := (t)a. it is a lattice by Lemma 2.9 and
satisfies (ta)p = tpap for all p. We will now associate to t an isomorphism K/a −→ K/ta. For
this, first note there is an isomorphism

K/a ∼=
⊕
p

Kp/ap. (13)

Indeed, by decomposition into p-primary components of the torsion Z-module K/a, we have
K/a ∼=

⊕
p(K/a)(p) where (K/a)(p) denotes the p-primary part, and it is well known that

(K/a)(p) ∼= Kp/ap for all p. For each p the multiplication by tp map defines an isomor-
phism Kp/ap −→ Kp/tpap, and combining all these isomorphisms thanks to (13), we get an
isomorphism

K/a −→ K/ta
x = (xp)p 7→ (tpxp)p

The image (tpxp) of an element x ∈ K/a by this isomorphism will be denoted tx.
This multiplication action extends easily to an étale algebra W =

∏r
i=1Ki: take t =

(t1, . . . , tr) ∈ A∗W =
∏r
i=1 AKi , and for a lattice a =

∏r
i=1 ai ∈ W , define ta =

∏r
i=1 tiai.

Then W/a ∼=
∏r
i=1Ki/ai, W/ta ∼=

∏r
i=1Ki/tiai, and multiplication by t will be the map

W/a −→ W/ta
x = (x1, . . . , xr) 7→ tx = (t1x1, . . . , trxr)
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4.2 The main theorem of complex multiplication

Let K be a CM field and (A, ι, C) be of type (K,Φ) and let σ ∈ Aut(C). Then the CM-type
of (Aσ, ισ, Cσ) can be proved to be (K,Φσ), and its complete type is given by the theorem
of Tate and Deligne. In this section we are going to restrict to the special case treated by
Shimura, and which is the one useful for deducing explicit class field theory results. We are
therefore going to assume

σ fixes the reflex field K ′ of K. (14)

This has two crucial consequences:

(a) By Proposition 3.9 Φσ = Φ, and therefore A and Aσ are isogenous.

(b) There is an s ∈ A∗K′ such that its image [s,K ′] by the reciprocity map

A∗K′ −→ Gal
(
K ′ab/K ′

)
satisfies [s,K ′] = σ|K′ab .

The theorem below then states in particular that the isogeny of (a) is given by

Cn/u(a) −→ Cn/u(NΦ(s)−1a)

so that in particular, Cn/u(NΦ(s)−1a) is isomorphic to Aσ, and that this isomorphism can
be chosen in a manner that makes this isogeny, restricted to torsion points of the variety,
correspond through u to multiplication by the idele NΦ(s)−1.

Theorem 4.1 Let P = (A, ι, C) be a polarised abelian variety of type (K,Φ; a, τ) as above.
Fix σ ∈ Aut(C/K ′) and choose s ∈ A∗K such that σ|K′ab = [s,K ′]. Then there is a unique
complex analytic isomorphism

ξ′ : Cn/u(NΦ(s)−1a) −→ Aσ

having the following properties:

(1) Pσ is of type (K,Φ, NΦ(s)−1a, N((s))τ) with respect to ξ′.

(2) There is a commutative diagram

K/a

ξ◦u
��

NΦ(s)−1

// K/NΦ(s)−1a

ξ′◦u
��

A
σ // Aσ

(15)

There are two parts in this theorem, which, though deeply related, answer two different ques-
tions. The first part gives a precise description of the type, and therefore of the isomorphism
class of the image of the polarised abelian variety (A, ι, C) under an algebraic automorphism
fixing the reflex field. The second one states, as Silverman ([5]) puts it, that on torsion points,
such an algebraic action can be reinterpreted as an analytic action of multiplication by an
idele.

The proof of this theorem requires quite a few results from the theory of good reduction of
abelian varieties and more generally from algebraic geometry, which we don’t want to develop
here. Our account of the proof is therefore quite elliptical in the steps concerned with them:
this is the main reason why it bears the title ”Detailed sketch of proof” rather than just
”Proof”.
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Summary of proof. After some useful reductions, we begin by proving the theorem for
M -torsion points for some fixed M . We choose a convenient big number field L containing
everything we need, as well as a prime P of this number field satisfying some conditions.
Thanks to this and class field theory, we can decompose s as s = c$e where c ∈ K ′∗ and e
is a unit idele (so that NΦ(e)−1a = a), in order to divide up the proof into two smaller and
easier steps: we split up the isogeny Cn/u(a) −→ Cn/u(NΦ(s)−1a) into an isogeny

Cn/u(a) −→ Cn/u(NΦ($)−1a)

and an isomorphism
Cn/u(NΦ($)−1a) −→ Cn/u(NΦ(s)−1a).

The core of the proof is to prove that Cn/u(NΦ($)−1a) ∼= Aσ, and to choose the isomorphism
ξ′ properly so that the corresponding isogeny κ : A −→ Aσ coincides with σ on m-torsion:
this is important to relate σ to multiplication by NΦ(s)−1 on torsion points. The map ξ′ is
then obtained using ξ∗ as shown in the following diagram:

Cn/u(a) //

ξ

��

Cn/u(NΦ($)−1a) //

ξ∗

��

Cn/u(NΦ(s)−1a)

ξ′

��
A

κ // Aσ
id // Aσ

Finally a simple computation using the properties of $ and e proves requirement (2) for
M -torsion points, and a last check shows that all the constructed ξ′ for different values of M
are the same.

Detailed sketch of proof.

1. Though the theorem doesn’t require P to be defined over an algebraic number field,
we will need to reduce to this case here as the proof uses reduction modulo primes in
number fields. According to Shimura ([4], Proposition 26 of 12.3), an abelian variety
with complex multiplication is always isomorphic to an abelian variety defined over a
number field. Moreover, some results from algebraic geometry enable us to define C
over a number field as well. Observing that if the theorem is true for some structure
P, it is also true for any structure isomorphic to it, we can assume P is defined over an
algebraic number field.

2. We also reduce to the case where ι(OK) ⊂ End(A), i.e. A is principal. We won’t give
details on this here.

3. We will begin by constructing the map ξ′ so that it has the required properties only on
M -torsion points for some sufficiently big integer M , and then show in the last step of
the proof that all the maps we have constructed are the same. Fix therefore a positive
integer M .

4. We choose a sufficiently big number field L over which to work: it has to be Galois, it
has to contain the ray class field K ′(M) of K ′ modulo M and be a field of definition for

A and a set {Ai}i of representatives of isomorphism classes of abelian varieties of type
(K,Φ) and for all homomorphisms between these varieties.
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5. The proof will work by reduction modulo a well-chosen prime P of L. Using the Tcheb-
otarev density theorem, it can be chosen so that

• σ|L is a Frobenius element for P,

• the prime p = P ∩ K ′ is of inertia degree one with respect to p = p ∩ Q (i.e.
N(p) = p),

and also so that P satisfies some other properties each excluding only a finite number
of primes:

• p is unramified in L,

• the finite number of abelian varieties we are working with all have good reduction
modulo P,

• M is prime to P.

6. We are going to decompose the multiplication action by the idele s thanks to class
field theory. Let $ ∈ A∗K′ be such that $q = 1 for every prime q 6= p, and $p is a
uniformiser of K ′p. Then [s,K ′] agrees on K ′(M) with [$,K ′], as they are both Frobenius

elements for P. Therefore, according to 2.5 we can write s$−1 = ce, where c ∈ (K ′)∗

and e ∈ U(M), i.e.

eq ∈ O∗K′,q and eq ≡ 1 (mod MOK′,q) for all primes q.

Then NΦ(s)−1a = NΦ($)−1NΦ(c)−1NΦ(e)−1a = NΦ(p)−1NΦ(c)−1a (where NΦ(p) is
the reflex norm of the ideal p, defined in the Remark below Proposition 3.10 ), since
(NΦ(e)) = OK . In view of this decomposition, our new goal is to construct ξ∗ and ξ′

such that there is a commutative diagram

Cn id //

��

Cn DΦ(NΦ(c))−1

//

��

Cn

��
Cn/u(a) //

ξ

��

Cn/u(NΦ(p)−1a) //

ξ∗

��

Cn/u(NΦ(s)−1a)

ξ′

��
A // Aσ

id // Aσ

(16)

and that the composition of the maps in the second line agrees on torsion points with
multiplication by NΦ(s)−1.

7. Let us first establish the NΦ(p)-part, i.e. the left hand side of the above diagram.
According to Proposition 3.15, Cn/u(NΦ(p)−1a) is of type (K,Φ), so is isomorphic to
some Ai. We therefore must prove that this Ai is isomorphic to Aσ. This isomorphism
is constructed modulo P and then lifted up as follows. Reduction modulo P is denoted
with tildes.

a. The reduction λ̃ of the isogeny λ : A −→ Ai is proven to be a totally inseparable
map using differential forms. From this, denoting π : Ã −→ Ãp the p-th power map,
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an isomorphism ρ̃ : Ãi −→ Ãp such that

Ã
λ̃ //

π ��

Ãi

ρ̃
��
Ãp

is constructed.

b. Since σ modulo P acts as the p-th power map, ρ̃ is lifted up to an isomorphism
ρ : Ai −→ Aσ. Replacing λ by κ = ρ ◦ λ, we get an isogeny κ : A −→ Aσ whose
reduction modulo P is the p-th power map π = ρ̃ ◦ λ̃.

The map ξ∗ is then obtained as shown in the following diagram.

Cn id //

��

Cn

��
Cn/u(a) //

ξ

��

Cn/u(NΦ(p)−1a)

��
ξ∗

��

A
λ //

κ
((

Ai

ρ

��
Aσ

8. The right-hand side of diagram (16) together with the map ξ′ is then obtained easily
from the left-hand side. Thanks to this diagram, we can finalise our proof of the first
part of the theorem, and of the second part for M -torsion.

a. Computation of the type of (Aσ, ισ, Cσ): according to the diagram, the lattice as-
sociated to (Aσ, ισ, Cσ) with respect to ξ′ is NΦ(s)−1a. A computation in terms
of divisors and `-adic representations shows that the element of K associated to
(Aσ, ισ, Cσ) via ξ∗ is pτ . Then, using Lemma 3.19, we get that the element corre-
sponding to (Aσ, ισ, Cσ) via ξ′ is NΦ(c)NΦ(c)pτ = N((c))N(p)τ = N((s))τ .

b. Turning our attention to M -torsion points, we get

M−1a/a //

ξ◦u
��

M−1NΦ(p)−1a/NΦ(p)−1a
NΦ(c)−1

//

ξ∗◦u
��

M−1NΦ(s)−1a/NΦ(s)−1a

ξ′◦u
��

A
κ // Aσ

id // Aσ

Note that in this diagram, κ can be replaced by σ. Indeed, these two maps both
reduce modulo P to the p-th power map. M being prime to P, reduction modulo P
is injective on M -torsion, and therefore σ and κ agree on M -torsion.

To check the constructed ξ′ has the required properties, we need to prove that the
action of σ on M -torsion points of A corresponds to multiplication by NΦ(s)−1, that
is, for x ∈M−1a/a

ξ ◦ u(x)σ = ξ′ ◦ u(NΦ(s)−1x mod NΦ(s)−1a).
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Using the above diagram and the fact that σ and κ agree on M -torsion, we get

ξ ◦ u(x)σ = κ(ξ ◦ u(x)) = ξ∗ ◦ u(x mod NΦ(p)−1a)
= ξ′ ◦ u(NΦ(c)−1x mod NΦ(s)−1a).

ξ′ ◦ u being injective, it suffices to prove that for every t ∈M−1a

NΦ(c)−1t−NΦ(s)−1t ∈ NΦ(s)−1a. (17)

Thanks to the decomposition s = c$e and after multiplication by M , this is equiv-
alent to

tq − (NΦ($)NΦ(e)t)q ∈Maq for all primes q and for all t ∈ a,

or simply to
(1−NΦ($)qNΦ(e)q)aq ⊂Maq for all primes q.

According to the remark below Proposition 3.10, NΦ(e)q ≡ 1 (mod MOK,q) and
NΦ(e) ∈ O∗K,q for all q, so this reduces to

(1−NΦ($)q)aq ⊂Maq.

If q 6= p, then NΦ($)q = 1, so the above equation is true in this case. Now suppose
q = p. M being prime to p, Map = ap, so we have to prove

NΦ($)pap ⊂ ap.

But by construction of $, NΦ($)p ∈ NΦ(p)p ⊂ OK,p, which concludes the proof of
(17) also in this case, a being a fractional ideal.

9. Finally we have to prove ξ′ doesn’t in fact depend on the integer M . Take MN a
multiple of M , denote ξ′M the isomorphism we have constructed above, and ξ′MN the
isomorphism obtained by replacing M by MN , satisfying exactly the same properties
for MN -torsion. Note that ξ′MN ◦ ξ

′−1
M is an automorphism of (Aσ, ισ). Indeed, by

definition ισ corresponds to Dσ
Φ both through ξM and through ξ′MN , that is, we have

ξ′M ◦Dσ
Φ(a) = ισ(a)◦ ξ′M for all a ∈ K, and an analogous relation is true for ξ′MN . Using

this, we see that ξ′MN ◦ ξ
′−1
M commutes with ισ(a) for all a. Therefore by Lemma 3.15,

there is an element b ∈ O∗K such that

ξ′MN ◦ ξ′−1
M = ισ(b).

This can be rewritten as ξ′MN = ξ′M ◦Dσ
Φ(b), thanks to which we can apply Lemma 3.19:

Aσ is of the same type with respect to both ξ′M and ξ′MN , so we get bb̄ = 1. Using
Lemma 3.2, we therefore have proved that |bφ| = 1 for every embedding φ : K −→ C,
that is, b is a root of unity. We are going to show that, provided the initial M was
sufficiently large, b = 1. For this, as Aut(P) is finite, we can choose b inside a finite set
of representatives of

ι−1(Aut(P)) ∩ {roots of unity in K} (18)
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without changing ι(b). By assumption, ξ′M and ξ′MN both make diagram (15) commute
on M -torsion. For every w ∈M−1a/a, ξ ◦ u(w)σ can thus be expressed in two different
ways, as done in the following calculation:

ξ ◦ u(bw)σ = ι(b)σ(ξ ◦ u(w))σ as through ξ ◦ u multiplication by b becomes ι(b),
= ι(b)σξ′M ◦ u(NΦ(s)−1w) using assumption on ξ′M ,

= ξ′MN ◦ u(NΦ(s)−1w) using ξ′MN ◦ ξ
′−1
M = ισ(b),

= ξ ◦ u(w)σ using assumption on ξ′MN ,

so bw = w, which, w being M -torsion, implies b ≡ 1 (mod MOK). But we have chosen
b in a finite set of roots of unity. Therefore, if the initial M was sufficiently big, b is
necessarily 1, which shows that ξ′M = ξ′MN . We conclude that diagram (15) commutes
also on MN -torsion for all N > 0, which completes the proof. �

Theorem 4.2 Theorem 4.1 holds if K is replaced by a CM-algebra W .

Proof. First of all, by the same argument as in Step 2 of the proof of Theorem 4.1, we can
assume a =

∏r
i=1 ai where ai is a fractional ideal of Ki for all i. This is needed to ensure

that the isogeny A −→ A1 × . . . × Ar constructed in the generalisation to CM-algebras of
subsection 3.4 is actually an isomorphism. Then we can apply Theorem 4.1 to (Ai, ιi, Ci)
with Ci determined in the generalisation to CM-algebras of subsection 3.5. To conclude, it
suffices to combine the results for all i by taking the product. �

5 Construction of class fields

5.1 Fields of moduli

Let (W,Φ) be a CM-type. Consider a structure P = (A, ι, C, {t1, . . . , tr}) composed of an
abelian variety A polarised by C, an embedding ι : W −→ EndQ(A) and a set {t1, . . . , tr} of
torsion points of A. For another such structure P ′ = (A′, ι′, C′, {t′1, . . . , t′r}), an isomorphism
P −→ P ′ is defined to be an isomorphism f : (A, C) −→ (A′, C′) such that f(ti) = t′i for all
i = 1, . . . , r. A field of definition for P is a field k over which A, C, every element of ι(W ), as
well as ti for all i are rational.

Proposition 5.1 Let P be such a structure. There exists a subfield kP of C with the following
properties:

1. Every field of definition for P contains kP .

2. If P is defined over a field k and σ : k ↪→ C is an embedding of k into C then

σ|kP = id if and only if P is isomorphic to Pσ.

3. kP is uniquely determined by these properties.

We are not going to prove this proposition, but will merely remark that in the case where P
is defined over some number field k, which without loss of generality we can assume to be a
Galois extension of Q, kP is easily given by Galois theory, considering the field corresponding
to the subgroup HP of Gal(k/Q) defined by

HP = {σ ∈ Gal(k/Q)| P isomorphic to Pσ}.
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Lemma 5.2 Let kP be as above the field of moduli of the structure P of type (W,Φ). Then
kP contains the reflex field K ′ of K.

Proof. It suffices to show that any automorphism σ of C fixing kP also fixes K ′, i.e.,
satisfies

(tr Φ(a))σ = tr Φ(a) for all a ∈W.

Fix a ∈W . In view of the chosen isomorphism A ∼= Cn/Λ, the element tr Φ(a) of K ′ is nothing
other than the trace of the endomorphism DΦ(a) of Cn, obtained by lifting ι(a) ∈ EndQ(A)
as we did in 3.4, using the analytic representation of EndQ(A).For σ fixing kP , take an
isomorphism λ : P −→ Pσ. It satisfies λι(a) = ι(a)σλ. λ induces an isomorphism of Cn that
we also denote by λ. By this method, we have actually lifted ι(a) to an endomorphism of the
tangent space Tgt0(A) of A at 0, and λ to an isomorphism Tgt0(A) −→ Tgt0(Aσ). σ induces
an isomorphism between these tangent spaces, so in particular the lift of ι(a)σ is DΦ(a)σ.
Then λDΦ(a) = DΦ(a)σλ, and DΦ(a) and DΦ(a)σ, being conjugate, have the same trace. �

Kummer varieties An abelian variety on its own can have an infinite number of automor-
phisms. Weil’s fundamental idea when introducing polarisations was that

Proposition 5.3 A polarised abelian variety has only a finite number of automorphisms.

Therefore, considering an abelian variety A together with a polarisation C, we can prove that
an analogue of a Weber function, namely a quotient h : A −→ A/Aut(A, C), can be defined.
An alternative definition that also works is h : A −→ A/Aut(A, ι, C), since Aut(A, ι, C) is also
finite. In what follows, we will always denote the Kummer variety of (A, ι, C) by (V, h) where
V = A/Aut(A, ι, C) and h : A −→ V the above quotient map.

The field of moduli of a structure {A, ι, C, {ti}} can be constructed explicitly in terms of
the h(ti) and the field of moduli of A, ι, C, as stated in the following proposition which we
won’t prove:

Proposition 5.4 Let (A, ι, C) be a polarised abelian variety with complex multiplication and
(V, h) the Kummer variety of A. Then for every t ∈ A the field of moduli kA,ι,C,t is equal to
kA,ι,C(h(t)).

5.2 Construction of class fields

Let, (W,Φ) be a CM-pair, (K ′,Φ′) its reflex, P = (A, ι, C, {t1, . . . , tr}) a structure with (A, ι, C)
a polarised abelian variety of type (W,Φ, a, τ) and t1, . . . , tr torsion points of A. Define also
wi ∈ W/a such that ξ ◦ u(wi) = ti for all i. Denote by k the field of moduli kP of P. Let us
begin with a general theorem from which we will derive all other results:

Theorem 5.5 Let T be the subgroup of A∗K′ defined by

T =


NΦ(s)−1a = ba,

s ∈ A∗K′ | ∃b ∈W ∗ such that bb̄N((s)) = 1
NΦ(s)−1wi = bwi for all i

 .

Then k is an abelian extension of K ′ corresponding to the subgroup T .
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Proof. Note first of all that by Lemma 5.2, k contains K ′, so any automorphism σ of C fixing
k induces [s,K ′] on K ′ab for some idele s. Denote by F the extension of K ′ corresponding to
T . Take ξ′ as in Theorem 4.1, so that ξ′ ◦ u(NΦ(s)−1wi) = (ξ ◦ u(wi))

σ.
Proof that k ⊂ F . It suffices to prove that if s is an element of T and σ is an automorphism

of C inducing [s,K ′] on K ′ab, then σ fixes k, i.e. P is isomorphic to Pσ. But using the main
theorem of complex multiplication and the assumption on s we see that there is a b ∈W such
that (A, ι, C)σ is of type (W,Φ, ba, (bb̄)−1τ). This type is equivalent to the type of (A, ι, C),
so (A, ι, C) and (A, ι, C)σ are isomorphic by Proposition 3.18, the isomorphism being given by
λ = ι(b). We now need to check λ(ti) = tσi for all i. The left-hand side is by definition of
λ given by ξ′ ◦ u(bwi), and the right-hand side, using the property (15) of ξ′ from the main
theorem, is ξ′ ◦ u(NΦ(s)−1wi). Both sides are equal since s ∈ T .

Proof that k ⊃ F . Let σ be an automorphism fixing k and inducing [s,K ′] on K ′ab for
some s ∈ A∗W . To conclude, we must prove that s ∈ T . By definition of k, there is an
isomorphism λ : P −→ Pσ. Using the main theorem of complex multiplication, we know
that Pσ is of type (W,Φ, NΦ(s)−1a, N((s))τ) By Lemma 3.14, λ comes from a multiplication
by b map on W for some b ∈ W , so we already know NΦ(s)−1a = ba and bb̄N((s)) = 1 by
Proposition 3.19. On the other hand, since λ is an isomorphism, we must by definition have
λ(ti) = tσi for every i. Therefore

ξ′ ◦ u(NΦ(s)−1(wi)) = (ξ ◦ u(wi))
σ = λ(ξ ◦ u(wi)) = ξ′ ◦ u(bwi),

and thus, ξ′ ◦ u being injective, s ∈ T . �
This proposition shows how the fact of considering CM-algebras and not only CM-fields
enlarges the scope of our results by allowing us to impose more conditions on the elements in
the group T .

As in the elliptic curves case, we can be more precise in the case where A is principal,
that is ι(OW ) ⊂ End(E).

Corollary 5.6 Let (W,Φ) and (A, ι, C) of type (W,Φ, a, τ) as above. Suppose in addition that
A is principal. Then the field of moduli kA,ι,C is an unramified abelian extension of K ′.

Proof. Apply Theorem 5.5 omitting the wi. Then it suffices to prove that the group T contains
the group of unit ideles of K ′

U(1) = {s ∈ A∗K′ | sp ∈ O∗p,K′ for all p}.

If s ∈ U(1), then (s) = OK′ (so N((s)) = 1) and (NΦ(s)−1) = OW . Since A is principal, a is
a fractional ideal of K, so NΦ(s)−1a = a. Therefore, taking b = 1 we see s ∈ T . �

A result analogous to the elliptic curves case also holds for unramified extensions. One
must however be prudent as there are different fields with different ideals involved: the best
bound we can give on the conductor is therefore a rational integer. Denote by

A[c] = {t ∈ A | at = 0 for all a ∈ c}

the group of c-torsion points of A for any integral ideal c in W .

Corollary 5.7 Let (W,Φ),(A, ι, C) be as above, and (V, h) the Kummer variety of (A, ι, C).
Let moreover c = c1 × . . . × cr be an integral ideal of W , ci the smallest positive integer
contained in ci for all i, and c the least common multiple of the ci. Then kA,ι,C(h(A[c])) is an
abelian extension of K ′, of conductor dividing c.
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Proof. According to Proposition 5.4, kA,ι,C(h(A[c])) = kA,ι,C,A[c]. Applying Theorem 5.5 with
the set {ti}i = A[c] , it is therefore sufficient to check that the corresponding group T contains
the group of unit ideles modulo c:

U(c) = {s ∈ A∗K′ | sp ∈ O∗p,K′ and sp ≡ 1 (mod cOp,K′) for all p}.

Let s ∈ U(c). As in the proof of Corollary 5.6, we have N((s)) = 1 and (NΦ(s)−1) = OW . But
we have moreover that NΦ(s) is a unit idele modulo c in W , so for every t = ξ ◦ u(w) ∈ A[c],
NΦ(s)(t) = t. Therefore s ∈ T and the proof is finished. �
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