Algebra homework 1 Set theory, equivalence relations

Due September 18th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.
Exercise 1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the map $f: x \mapsto(x+1)^{2}$. Compute the inverse image sets $f^{-1}(A)$ of the following sets A :
(a) $\{-9\}$,
(b) $\{-1,0,4\}$,
(c) $[0,+\infty)=\{x \in \mathbf{R}: x \geq 0\}$.

Exercise 2. Let $f: X \rightarrow Y$ be a map between sets.

1. For any two subsets A, B of Y, show that

$$
f^{-1}(A) \cup f^{-1}(B)=f^{-1}(A \cup B) \quad \text { and } \quad f^{-1}(A) \cap f^{-1}(B)=f^{-1}(A \cap B) .
$$

2. For any two subsets A, B of X, show that

$$
f(A) \cup f(B)=f(A \cup B) .
$$

3. (a) Show that in general

$$
\begin{equation*}
f(A) \cap f(B) \neq f(A \cap B) \tag{1}
\end{equation*}
$$

by giving a counterexample. (Hint: draw a picture)
(b) Show that we do get equality in (1) if we furthermore assume that f is injective.

Exercise 3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps between sets.

1. Show that if $g \circ f$ is injective, then f is injective.
2. Show that if $g \circ f$ is surjective, then g is surjective.

Exercise 4. For an element $x=\left(x_{1}, x_{2}\right)$ of the plane \mathbf{R}^{2}, we denote by $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ its Euclidean norm. Let \sim be the relation on the plane \mathbf{R}^{2} given by

$$
x \sim y \quad \text { if } \quad\|x\|=\|y\| .
$$

Show that \sim is an equivalence relation and describe its equivalence classes.
Exercise 5. We define a relation R on \mathbf{Z} by $a R b$ if a divides $2 b$.

1. Is R reflexive?
2. Is it symmetric?
3. Is it transitive?
