Algebra homework 10
 Index, Lagrange's theorem, normal subgroups

Due December 4th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.
Exercise 1. Compute the indexes of the following subgroups H_{i} of the following groups G_{i}. Which of these subgroups H_{i} are normal subgroups of G_{i} ?

1. $H_{1}=\langle 3\rangle$ (subgroup generated by 3) in $G_{1}=\mathbf{Z} / 81 \mathbf{Z}$.
2. $H_{2}=23 \mathbf{Z}$ in $G_{2}=\mathbf{Z}$.
3. $H_{3}=\{\operatorname{id},(1,2,3),(1,3,2)\}$ in $G_{3}=\mathfrak{S}_{3}$.
4. $H_{4}=\{\operatorname{id},(1,3)\}$ in $G_{4}=\mathfrak{S}_{3}$.

Exercise 2. Let $f: \mathbf{Z} / 9 \mathbf{Z} \rightarrow \mathbf{Z} / 9 \mathbf{Z}$ given by $f(x)=3 x$.

1. Prove that f is a group homomorphism.
2. Compute $\operatorname{Ker} f$ and $\operatorname{Im} f$.
3. Check that $[\mathbf{Z} / 9 \mathbf{Z}: \operatorname{Ker} f]=|\operatorname{Im} f|$.

Exercise 3. 1. Give a list of all the subgroups of $\mathbf{Z} / 14 \mathbf{Z}$ together with their orders.
2. Check that

$$
14=\sum_{d \mid 14} \phi(d)
$$

where ϕ is Euler's function.
Exercise 4. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Assume that G is of order $18, G^{\prime}$ is of order 15 and that ϕ is not the trivial homomorphism. What is the order of $\operatorname{Ker} \phi$?

Exercise 5. 1. Find an integer x such that $x^{2} \equiv-1(\bmod 5)$.
2. Find an integer x such that $x^{2} \equiv-1(\bmod 13)$.
3. Let p be a prime congruent to 3 modulo 4 . Show that there is no solution to the equation $x^{2} \equiv-1(\bmod p)$.

Exercise 6. For every integer $n \geq 0$, show that 13 divides $11^{12 n+6}+1$.
Exercise 7. Find the remainder of 11^{1213} in the Euclidean division by 26.
Exercise 8. Let G be a group, and H, K normal subgroups of G. Show that $H \cap K$ is a normal subgroup of G.

