Algebra homework 10

Index, Lagrange's theorem, normal subgroups

Exercise 1. Compute the indexes of the following subgroups H_{i} of the following groups G_{i}.

1. $H_{1}=\langle 3\rangle$ (subgroup generated by 3) in $G_{1}=\mathbf{Z} / 81 \mathbf{Z}$.

Solution. You can compute the index using the counting formula, by first computing the order of H_{1}. We have

$$
H_{1}=\{0,1 \cdot 3,2 \cdot 3, \ldots, 26 \cdot 3\}
$$

so $\left|H_{1}\right|=27$, and therefore

$$
\left[G_{1}: H_{1}\right]=\frac{\left|G_{1}\right|}{\left|H_{1}\right|}=\frac{81}{27}=3
$$

In general, you can remember that $\mathbf{Z} / n \mathbf{Z}$ has a unique group of order d (and index n / d) for every divisor d of n, namely $\left\langle\frac{n}{d}\right\rangle$. Thus, here, since $3=81 / 27$, we have that $\langle 3\rangle$ is of order 27 and index 3.
2. $H_{2}=23 \mathbf{Z}$ in $G_{2}=\mathbf{Z}$.

Solution.

The cosets correspond to the 23 possible remainders of the Euclidean division by 23. Hence, $\left[G_{2}: H_{2}\right]=23$.
3. $H_{3}=\{\operatorname{id},(1,2,3),(1,3,2)\}$ in $G_{3}=\mathfrak{S}_{3}$.

Solution.

The index of H_{3} in G_{3} is given by the counting formula:

$$
\left[G_{3}: H_{3}\right]=\frac{\left|G_{3}\right|}{\left|H_{3}\right|}=\frac{6}{3}=2
$$

4. $H_{4}=\{\operatorname{id},(1,3)\}$ in $G_{4}=\mathfrak{S}_{3}$.

Solution.
The index of H_{4} in G_{4} is given by the counting formula:

$$
\left[G_{4}: H_{4}\right]=\frac{\left|G_{4}\right|}{\left|H_{4}\right|}=\frac{6}{2}=3
$$

Exercise 2. Let $f: \mathbf{Z} / 9 \mathbf{Z} \rightarrow \mathbf{Z} / 9 \mathbf{Z}$ given by $f(x)=3 x$.

1. Prove that f is a group homomorphism.

Solution.

f is clearly well-defined. Let $x, y \in \mathbf{Z} / 9 \mathbf{Z}$. We have:

$$
f(x+y)=3(x+y)=3 x+3 y=f(x)+f(y)
$$

This is true for any x, y. As a consequence f is a homomorphism.
2. Compute $\operatorname{Ker} f$ and $\operatorname{Im} f$.

Solution.

By definition, Ker $f=\{x \in \mathbf{Z} / 9 \mathbf{Z}: 3 x=0\}=\{0,3,6\}$.
$\operatorname{Im} f=\{3 x: x \in \mathbf{Z} / 9 \mathbf{Z}\}=\{0,3,6\}$.
3. Check that $[\mathbf{Z} / 9 \mathbf{Z}: \operatorname{Ker} f]=|\operatorname{Im} f|$.

Solution. The kernel has three cosets $\{0,3,6\},\{1,4,7\},\{2,5,8\}$, so it is of index 3 . The image is of order 3 , so the formula indeed holds.

Exercise 3. 1. Give a list of all the subgroups of $\mathbf{Z} / 14 \mathbf{Z}$ together with their orders.
Solution.
The order of a subgroup of $\mathbf{Z} / 14 \mathbf{Z}$ must divide 14 . Therefore, non trivial subgroups can be of order 2 or 7 . Moreover, we know from lectures that for every divisor d of 14 , there is a unique subgroup of order d, namely the one generated by $\frac{14}{d}$. Thus, the only subgroups other than $\{0\}$ and $\mathbf{Z} / 14 \mathbf{Z}$ are $\langle 2\rangle=\{0,2,4,6,8,10,12\}$ of order 7 and $\langle 7\rangle=\{0,7\}$ of order 2 .
2. Check that

$$
14=\sum_{d \mid 14} \phi(d)
$$

where ϕ is Euler's function.

Solution.

By definition of the Euler function, we have $\phi(14)=6$, since $1,3,5,9,11,13$ are relatively prime to $14, \phi(1)=1, \phi(2)=1, \phi(7)=6$.
Therefore the formula is satisfied on this example: $14=\phi(1)+\phi(2)+\phi(7)+\phi(14)$.
Exercise 4. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. Assume that G is of order $18, G^{\prime}$ is of order 15 and that ϕ is not the trivial homomorphism. What is the order of Ker ϕ ?
Solution.
As seen in lectures, $|\operatorname{Ker} \phi| \times|\operatorname{Im} \phi|=|G|=18$.
Let's analyze the order of the image. It's a subgroup of G^{\prime} and therefore, by Lagrange's theorem, $|\operatorname{Im} \phi|$ divides 15 . So it's either 3,5 or 15 (1 is excluded since ϕ is not trivial.).
It can't be 5 nor 15 since $|\operatorname{Ker} \phi| \times|\operatorname{Im} \phi|=18$ implies that $|\operatorname{Im} \phi|$ is also a divisor of 18 .
Therefore, $|\operatorname{Im} \phi|=3$, and it follows that $|\operatorname{Ker} \phi|=\frac{18}{3}=6$.
Exercise 5. 1. Find an integer x such that $x^{2} \equiv-1(\bmod 5)$.

Solution.

Observe that $3^{2} \equiv-1(\bmod 5)$.
2. Find an integer x such that $x^{2} \equiv-1(\bmod 13)$.

Solution.

Observe that $5^{2} \equiv-1(\bmod 13)$.
3. Let p be a prime congruent to 3 modulo 4 . Show that there is no solution to the equation $x^{2} \equiv-1(\bmod p)$.
Solution.
Assume there exists x such that $x^{2} \equiv-1(\bmod p)$. The integer $p-1$ is even, so we may raise both sides to the power $\frac{p-1}{2}$. On the left-hand side we get $\left(x^{2}\right)^{\frac{p-1}{2}}=x^{p-1}$, which by Fermat's little theorem should be congruent to 1 modulo p. On the right-hand side we get $(-1)^{\frac{p-1}{2}}$: since p is of the form $3+4 k$ for some integer k, we get that $\frac{p-1}{2}=1+2 k$ is odd, so that $(-1)^{\frac{p-1}{2}}=-1$. We therefore get $1 \equiv-1(\bmod p)$, which implies that p divides 2 , which is impossible.

Exercise 6. For every integer $n \geq 0$, show that 13 divides $11^{12 n+6}+1$.

Solution. By Fermat's little theorem, $11^{12} \equiv 1(\bmod 13)$. Thus, for every $n \geq 0,11^{12 n} \equiv 1(\bmod 13)$. Now, we have $11 \equiv-2(\bmod 13)$, so $11^{2} \equiv 4(\bmod 13)$, so $11^{4} \equiv 3(\bmod 13)$, and, multiplying the last two congruences, $11^{6}=11^{2} \times 11^{4} \equiv 4 \times 3 \equiv-1(\bmod 13)$. Thus, we have $11^{12 n+6} \equiv-1$ $(\bmod 13)$, whence the result.

Exercise 7. Find the remainder of 11^{1213} in the Euclidean division by 26.
Solution. You can check that $\phi(26)=12$, so by Euler's theorem, since 11 is relatively prime to 26 ,

$$
11^{12} \equiv 1 \quad(\bmod 26)
$$

Now, $1213 \equiv 1(\bmod 12)$, so $11^{1213} \equiv 11(\bmod 26)$. The remainder is 11 .
Exercise 8. Let G be a group and H, K normal subgroups of G. Show that $H \cap K$ is a normal subgroup of G.

Solution. We first prove that $H \cap K$ is a subgroup of G.
Closure: Let $x, y \in H \cap K$. Then x, y are elements of H and of K. By closure of H and $K, x y$ is an element of H and of K, so of $H \cap K$.
Identity: We have $e \in H$ and $e \in K$, so $e \in H \cap K$.
Inverses: Let $x \in H \cap K$. Then $x \in H$, so $x^{-1} \in H$, and $x \in K$, so $x^{-1} \in K$. Thus $x^{-1} \in H \cap K$.
We now prove $H \cap K$ is normal. Let $x \in H \cap K$ and let $g \in G$. Then since $x \in H$ and H is normal, we have $g x g^{-1} \in H$. Since $x \in K$ and K is normal, we have $g x g^{-1} \in K$. Thus $g x g^{-1} \in H \cap K$, so $H \cap K$ is normal.

