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Algebra homework 10
Index, Lagrange’s theorem, normal subgroups

Exercise 1. Compute the indexes of the following subgroups Hi of the following groups Gi.

1. H1 = 〈3〉 (subgroup generated by 3) in G1 = Z/81Z.

Solution. You can compute the index using the counting formula, by first computing the order
of H1. We have

H1 = {0, 1 · 3, 2 · 3, . . . , 26 · 3}

so |H1| = 27, and therefore

[G1 : H1] =
|G1|
|H1|

=
81

27
= 3.

In general, you can remember that Z/nZ has a unique group of order d (and index n/d) for
every divisor d of n, namely 〈n

d
〉. Thus, here, since 3 = 81/27, we have that 〈3〉 is of order 27

and index 3.

2. H2 = 23Z in G2 = Z.

Solution.

The cosets correspond to the 23 possible remainders of the Euclidean division by 23. Hence,
[G2 : H2] = 23.

3. H3 = {id, (1, 2, 3), (1, 3, 2)} in G3 = S3.

Solution.

The index of H3 in G3 is given by the counting formula:

[G3 : H3] =
|G3|
|H3|

=
6

3
= 2

4. H4 = {id, (1, 3)} in G4 = S3.

Solution.

The index of H4 in G4 is given by the counting formula:

[G4 : H4] =
|G4|
|H4|

=
6

2
= 3

Exercise 2. Let f : Z/9Z→ Z/9Z given by f(x) = 3x.

1. Prove that f is a group homomorphism.

Solution.

f is clearly well-defined. Let x, y ∈ Z/9Z. We have:

f(x+ y) = 3(x+ y) = 3x+ 3y = f(x) + f(y)

This is true for any x, y. As a consequence f is a homomorphism.

2. Compute Ker f and Im f .

Solution.

By definition, Ker f = {x ∈ Z/9Z : 3x = 0} = {0, 3, 6}.
Im f = {3x : x ∈ Z/9Z} = {0, 3, 6}.



3. Check that [Z/9Z : Ker f ] = |Im f |.
Solution. The kernel has three cosets {0, 3, 6}, {1, 4, 7}, {2, 5, 8}, so it is of index 3. The image
is of order 3, so the formula indeed holds.

Exercise 3. 1. Give a list of all the subgroups of Z/14Z together with their orders.

Solution.

The order of a subgroup of Z/14Z must divide 14. Therefore, non trivial subgroups can be of
order 2 or 7. Moreover, we know from lectures that for every divisor d of 14, there is a unique
subgroup of order d, namely the one generated by 14

d
. Thus, the only subgroups other than {0}

and Z/14Z are 〈2〉 = {0, 2, 4, 6, 8, 10, 12} of order 7 and 〈7〉 = {0, 7} of order 2.

2. Check that
14 =

∑
d|14

φ(d)

where φ is Euler’s function.

Solution.

By definition of the Euler function, we have φ(14) = 6, since 1, 3, 5, 9, 11, 13 are relatively
prime to 14, φ(1) = 1, φ(2) = 1, φ(7) = 6.

Therefore the formula is satisfied on this example: 14 = φ(1) + φ(2) + φ(7) + φ(14).

Exercise 4. Let φ : G → G′ be a group homomorphism. Assume that G is of order 18, G′ is of
order 15 and that φ is not the trivial homomorphism. What is the order of Kerφ?
Solution.
As seen in lectures, |Kerφ| × |Imφ| = |G| = 18.
Let’s analyze the order of the image. It’s a subgroup of G′ and therefore, by Lagrange’s theorem,
|Imφ| divides 15. So it’s either 3, 5 or 15 (1 is excluded since φ is not trivial.).
It can’t be 5 nor 15 since |Kerφ| × |Imφ| = 18 implies that |Imφ| is also a divisor of 18.
Therefore, |Imφ| = 3, and it follows that |Kerφ| = 18

3
= 6.

Exercise 5. 1. Find an integer x such that x2 ≡ −1 (mod 5).

Solution.

Observe that 32 ≡ −1 (mod 5).

2. Find an integer x such that x2 ≡ −1 (mod 13).

Solution.

Observe that 52 ≡ −1 (mod 13).

3. Let p be a prime congruent to 3 modulo 4. Show that there is no solution to the equation
x2 ≡ −1 (mod p).

Solution.

Assume there exists x such that x2 ≡ −1 (mod p). The integer p− 1 is even, so we may raise
both sides to the power p−1

2
. On the left-hand side we get (x2)

p−1
2 = xp−1, which by Fermat’s

little theorem should be congruent to 1 modulo p. On the right-hand side we get (−1) p−1
2 :

since p is of the form 3 + 4k for some integer k, we get that p−1
2

= 1 + 2k is odd, so that
(−1) p−1

2 = −1. We therefore get 1 ≡ −1 (mod p), which implies that p divides 2, which is
impossible.

Exercise 6. For every integer n ≥ 0, show that 13 divides 1112n+6 + 1.



Solution. By Fermat’s little theorem, 1112 ≡ 1 (mod 13). Thus, for every n ≥ 0, 1112n ≡ 1 (mod 13).
Now, we have 11 ≡ −2 (mod 13), so 112 ≡ 4 (mod 13), so 114 ≡ 3 (mod 13), and, multiplying the
last two congruences, 116 = 112 × 114 ≡ 4 × 3 ≡ −1 (mod 13). Thus, we have 1112n+6 ≡ −1
(mod 13), whence the result.

Exercise 7. Find the remainder of 111213 in the Euclidean division by 26.

Solution. You can check that φ(26) = 12, so by Euler’s theorem, since 11 is relatively prime to 26,

1112 ≡ 1 (mod 26).

Now, 1213 ≡ 1 (mod 12), so 111213 ≡ 11 (mod 26). The remainder is 11.

Exercise 8. Let G be a group and H,K normal subgroups of G. Show that H ∩ K is a normal
subgroup of G.

Solution. We first prove that H ∩K is a subgroup of G.
Closure: Let x, y ∈ H ∩K. Then x, y are elements of H and of K. By closure of H and K, xy is an
element of H and of K, so of H ∩K.
Identity: We have e ∈ H and e ∈ K, so e ∈ H ∩K.
Inverses: Let x ∈ H ∩K. Then x ∈ H, so x−1 ∈ H, and x ∈ K, so x−1 ∈ K. Thus x−1 ∈ H ∩K.
We now prove H ∩K is normal. Let x ∈ H ∩K and let g ∈ G. Then since x ∈ H and H is normal,
we have gxg−1 ∈ H. Since x ∈ K and K is normal, we have gxg−1 ∈ K. Thus gxg−1 ∈ H ∩K, so
H ∩K is normal.


