Algebra homework 1 Set theory, equivalence relations Due September 18th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

Exercise 1. Let $f : \mathbf{R} \to \mathbf{R}$ be the map $f : x \mapsto (x+1)^2$. Compute the inverse image sets $f^{-1}(A)$ of the following sets A:

(a) $\{-9\},$

Solution. This is empty, as -9 is never a square.

(b) $\{-1, 0, 4\},$

Solution. We have

$$f^{-1}(\{-1,0,4\}) = \{x \in \mathbf{R} : (x+1)^2 = -1, 0 \text{ or } 4\}$$

= $\{x \in \mathbf{R} : x+1 = 0, 2 \text{ or } -2\}$
= $\{-1,1,-3\}.$

(c) $[0, +\infty) = \{x \in \mathbf{R} : x \ge 0\}.$ Solution. $f^{-1}([0, +\infty)) = \{x \in \mathbf{R}, (x+1)^2 \ge 0\} = \mathbf{R}.$

Exercise 2. Let $f: X \to Y$ be a map between sets.

1. For any two subsets A, B of Y, show that

$$f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B)$$
 and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B).$

Solution.

$$f^{-1}(A) \cup f^{-1}(B) = \{x \in X \text{ such that } x \in f^{-1}(A) \text{ or } x \in f^{-1}(B)\}$$
$$= \{x \in X \text{ such that } f(x) \in A \text{ or } f(x) \in B\}$$
$$= \{x \in X \text{ such that } f(x) \in A \cup B\}$$
$$= f^{-1}(A \cup B).$$

In exactly the same way,

$$f^{-1}(A) \cap f^{-1}(B) = \{x \in X \text{ such that } x \in f^{-1}(A) \text{ and } x \in f^{-1}(B)\}$$
$$= \{x \in X \text{ such that } f(x) \in A \text{ and } f(x) \in B\}$$
$$= \{x \in X \text{ such that } f(x) \in A \cap B\}$$
$$= f^{-1}(A \cap B).$$

2. For any two subsets A, B of X, show that

$$f(A) \cup f(B) = f(A \cup B).$$

Solution. Let $y \in Y$. We have $y \in f(A) \cup f(B)$ if and only if y is of the form f(x) where $x \in A$ or $x \in B$. This is the case if and only if y = f(x) with $x \in A \cup B$, that is, if and only if $y \in f(A \cup B)$, whence the result.

3. (a) Show that in general

$$f(A) \cap f(B) \neq f(A \cap B) \tag{1}$$

by giving a counterexample. (Hint: draw a picture) *Solution.* The following picture

shows that if $X = \{a, b\}$ is a set with two elements, $Y = \{y\}$ is a singleton (that is, a set with one element), and f is defined to be the constant map, we have, putting $A = \{a\}$ and $B = \{b\}$, that

$$f(A) \cap f(B) = \{y\}$$

whereas

$$f(A \cap B) = f(\emptyset) = \emptyset.$$

Note that the inclusion

$$f(A) \cap f(B) \supseteq f(A \cap B)$$

is nevertheless always true. Indeed, if $y \in f(A \cap B)$, then we can write y = f(x) with $x \in A \cap B$ (that is, $x \in A$ and $x \in B$), which means in particular that $y \in f(A)$ and $y \in f(B)$, that is, $y \in f(A) \cap f(B)$.

(b) Show that we do get equality in (1) if we furthermore assume that f is injective.

Solution. The answer to the previous question illustrates the fact that non-injectivity makes the equality go wrong. Assume that f is injective. We already know that

$$f(A) \cap f(B) \supseteq f(A \cap B)$$

so it suffices to prove that

$$f(A) \cap f(B) \subseteq f(A \cap B).$$

If $y \in f(A) \cap f(B)$ then $y \in f(A)$ and $y \in f(B)$, that is, y = f(a) = f(b) for some $a \in A$ and some $b \in B$. Since f is injective, we have a = b. Thus, $a \in B$, and so $a \in A \cap B$, which implies that $y \in f(A \cap B)$.

Exercise 3. Let $f: X \to Y$ and $g: Y \to Z$ be maps between sets.

1. Show that if $g \circ f$ is injective, then f is injective.

Solution. Assume that $g \circ f$ is injective. Let $x, y \in X$ be such that f(x) = f(y). Apply g to both sides of the equation, to get g(f(x)) = g(f(y)). By injectivity of $g \circ f$, we then get x = y. This proves f is injective.

2. Show that if $g \circ f$ is surjective, then g is surjective.

Solution. Assume $g \circ f$ is surjective. Let $z \in Z$. By surjectivity of $g \circ f$, we have an element $x \in X$ such that g(f(x)) = z. Then y = f(x) gives us an element of Y such that g(y) = z, so g is surjective.

Exercise 4. For an element $x = (x_1, x_2)$ of the plane \mathbf{R}^2 , we denote by $||x|| = \sqrt{x_1^2 + x_2^2}$ its Euclidean norm. Let \sim be the relation on the plane \mathbf{R}^2 given by

$$x \sim y$$
 if $||x|| = ||y||$.

Show that \sim is an equivalence relation and describe its equivalence classes.

Solution. For any $x \in \mathbf{R}^2$, we have ||x|| = ||x||, so $x \sim x$, so \sim is reflexive. For any $x, y \in \mathbf{R}^2$, if we have ||x|| = ||y|| then we have ||y|| = ||x||, and therefore $x \sim y$ implies $y \sim x$, which means that \sim is symmetric. Finally, for any $x, y, z \in \mathbf{R}^2$, if $x \sim y$ and $y \sim z$, then we have ||x|| = ||y|| and ||y|| = ||z||, and therefore ||x|| = ||z||, that is, $x \sim z$, so that \sim is transitive.

Let $x \in \mathbf{R}^2$, and put r = ||x||. Then the equivalence class of x is the set

$$\{y \in \mathbf{R}^2; ||y|| = r\}$$

of all elements with norm r. If r > 0 this is the circle C_r of radius r centered in the origin. For r = 0, the only point of norm zero is the origin, so the corresponding equivalence class is just the singleton $\{(0,0)\}$.

Exercise 5. We define a relation R on \mathbf{Z} by a R b if a divides 2b.

1. Is R reflexive?

Solution. Yes, since for every $a \in \mathbf{Z}$, we do have a|2a.

2. Is it symmetric?

Solution. No: we have 2R8, but we de not have 8R2.

3. Is it transitive?

Solution. If the relation were transitive, we would have that if a divides 2b and b divides 2c, then a divides 2c. Intuitively, this seems wrong as the assumption should a priori just imply that a divides 4c, not 2c. Let us build a counterexample based on this intuition, by trying c to be as small as possible while a is divisible by 4, so that we really need the factor 4. Thus, a = 4, b = 2, c = 1 gives us a counterexample.