Algebra homework 1 Set theory, equivalence relations

Due September 18th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.

Exercise 1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the map $f: x \mapsto(x+1)^{2}$. Compute the inverse image sets $f^{-1}(A)$ of the following sets A :
(a) $\{-9\}$,

Solution. This is empty, as -9 is never a square.
(b) $\{-1,0,4\}$,

Solution. We have

$$
\begin{aligned}
f^{-1}(\{-1,0,4\}) & =\left\{x \in \mathbf{R}:(x+1)^{2}=-1,0 \text { or } 4\right\} \\
& =\{x \in \mathbf{R}: x+1=0,2 \text { or }-2\} \\
& =\{-1,1,-3\} .
\end{aligned}
$$

(c) $[0,+\infty)=\{x \in \mathbf{R}: x \geq 0\}$.

Solution. $f^{-1}([0,+\infty))=\left\{x \in \mathbf{R},(x+1)^{2} \geq 0\right\}=\mathbf{R}$.
Exercise 2. Let $f: X \rightarrow Y$ be a map between sets.

1. For any two subsets A, B of Y, show that

$$
f^{-1}(A) \cup f^{-1}(B)=f^{-1}(A \cup B) \quad \text { and } \quad f^{-1}(A) \cap f^{-1}(B)=f^{-1}(A \cap B) .
$$

Solution.

$$
\begin{aligned}
f^{-1}(A) \cup f^{-1}(B) & =\left\{x \in X \text { such that } x \in f^{-1}(A) \text { or } x \in f^{-1}(B)\right\} \\
& =\{x \in X \text { such that } f(x) \in A \text { or } f(x) \in B\} \\
& =\{x \in X \text { such that } f(x) \in A \cup B\} \\
& =f^{-1}(A \cup B) .
\end{aligned}
$$

In exactly the same way,

$$
\begin{aligned}
f^{-1}(A) \cap f^{-1}(B) & =\left\{x \in X \text { such that } x \in f^{-1}(A) \text { and } x \in f^{-1}(B)\right\} \\
& =\{x \in X \text { such that } f(x) \in A \text { and } f(x) \in B\} \\
& =\{x \in X \text { such that } f(x) \in A \cap B\} \\
& =f^{-1}(A \cap B) .
\end{aligned}
$$

2. For any two subsets A, B of X, show that

$$
f(A) \cup f(B)=f(A \cup B)
$$

Solution. Let $y \in Y$. We have $y \in f(A) \cup f(B)$ if and only if y is of the form $f(x)$ where $x \in A$ or $x \in B$. This is the case if and only if $y=f(x)$ with $x \in A \cup B$, that is, if and only if $y \in f(A \cup B)$, whence the result.
3. (a) Show that in general

$$
\begin{equation*}
f(A) \cap f(B) \neq f(A \cap B) \tag{1}
\end{equation*}
$$

by giving a counterexample. (Hint: draw a picture)
Solution. The following picture

shows that if $X=\{a, b\}$ is a set with two elements, $Y=\{y\}$ is a singleton (that is, a set with one element), and f is defined to be the constant map, we have, putting $A=\{a\}$ and $B=\{b\}$, that

$$
f(A) \cap f(B)=\{y\}
$$

whereas

$$
f(A \cap B)=f(\varnothing)=\varnothing \text {. }
$$

Note that the inclusion

$$
f(A) \cap f(B) \supseteq f(A \cap B)
$$

is nevertheless always true. Indeed, if $y \in f(A \cap B)$, then we can write $y=f(x)$ with $x \in A \cap B$ (that is, $x \in A$ and $x \in B$), which means in particular that $y \in f(A)$ and $y \in f(B)$, that is, $y \in f(A) \cap f(B)$.
(b) Show that we do get equality in (11) if we furthermore assume that f is injective.

Solution. The answer to the previous question illustrates the fact that noninjectivity makes the equality go wrong. Assume that f is injective. We already know that

$$
f(A) \cap f(B) \supseteq f(A \cap B)
$$

so it suffices to prove that

$$
f(A) \cap f(B) \subseteq f(A \cap B)
$$

If $y \in f(A) \cap f(B)$ then $y \in f(A)$ and $y \in f(B)$, that is, $y=f(a)=f(b)$ for some $a \in A$ and some $b \in B$. Since f is injective, we have $a=b$. Thus, $a \in B$, and so $a \in A \cap B$, which implies that $y \in f(A \cap B)$.

Exercise 3. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps between sets.

1. Show that if $g \circ f$ is injective, then f is injective.

Solution. Assume that $g \circ f$ is injective. Let $x, y \in X$ be such that $f(x)=f(y)$. Apply g to both sides of the equation, to get $g(f(x))=g(f(y))$. By injectivity of $g \circ f$, we then get $x=y$. This proves f is injective.
2. Show that if $g \circ f$ is surjective, then g is surjective.

Solution. Assume $g \circ f$ is surjective. Let $z \in Z$. By surjectivity of $g \circ f$, we have an element $x \in X$ such that $g(f(x))=z$. Then $y=f(x)$ gives us an element of Y such that $g(y)=z$, so g is surjective.

Exercise 4. For an element $x=\left(x_{1}, x_{2}\right)$ of the plane \mathbf{R}^{2}, we denote by $\|x\|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ its Euclidean norm. Let \sim be the relation on the plane \mathbf{R}^{2} given by

$$
x \sim y \quad \text { if } \quad\|x\|=\|y\| .
$$

Show that \sim is an equivalence relation and describe its equivalence classes.
Solution. For any $x \in \mathbf{R}^{2}$, we have $\|x\|=\|x\|$, so $x \sim x$, so \sim is reflexive. For any $x, y \in \mathbf{R}^{2}$, if we have $\|x\|=\|y\|$ then we have $\|y\|=\|x\|$, and therefore $x \sim y$ implies $y \sim x$, which means that \sim is symmetric. Finally, for any $x, y, z \in \mathbf{R}^{2}$, if $x \sim y$ and $y \sim z$, then we have $\|x\|=\|y\|$ and $\|y\|=\|z\|$, and therefore $\|x\|=\|z\|$, that is, $x \sim z$, so that \sim is transitive.
Let $x \in \mathbf{R}^{2}$, and put $r=\|x\|$. Then the equivalence class of x is the set

$$
\left\{y \in \mathbf{R}^{2} ;\|y\|=r\right\}
$$

of all elements with norm r. If $r>0$ this is the circle C_{r} of radius r centered in the origin. For $r=0$, the only point of norm zero is the origin, so the corresponding equivalence class is just the singleton $\{(0,0)\}$.

Exercise 5. We define a relation R on \mathbf{Z} by $a R b$ if a divides $2 b$.

1. Is R reflexive?

Solution. Yes, since for every $a \in \mathbf{Z}$, we do have $a \mid 2 a$.
2. Is it symmetric?

Solution. No: we have $2 R 8$, but we de not have $8 R 2$.
3. Is it transitive?

Solution. If the relation were transitive, we would have that if a divides $2 b$ and b divides $2 c$, then a divides $2 c$. Intuitively, this seems wrong as the assumption should a priori just imply that a divides $4 c$, not $2 c$. Let us build a counterexample based on this intuition, by trying c to be as small as possible while a is divisible by 4 , so that we really need the factor 4 . Thus, $a=4, b=2, c=1$ gives us a counterexample.

