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Algebra homework 2
Arithmetic on the set of integers

Due September 25th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to
be justified.

Exercise 1. Prove the following properties:

(a) If a, b, c are integers such that a|b and b|c then a|c.
Solution. Let a, b, c ∈ Z. Let us suppose that a|b and b|c. By definition, there exist
p, q ∈ Z such that b = pa and c = qb. Substituting b in the second equality, we get:
c = (qp)× a, with qp ∈ Z.Therefore, a | c.

(b) If a, b are non-zero integers, then a|b and b|a implies a = b or a = −b.
Solution. By definition, there exist p, q ∈ Z such that b = pa and a = qb. Substituting
b in the second equality, we get: a = (qp)× a, which implies qp = 1, i.e. p = q = 1 or
p = q = −1. Therefore a = b or a = −b.

(c) If a, b, c are integers such that a|b and a|c, then for all integers u, v ∈ Z, a divides
ub+ vc.

Solution. By definition, there exist integers p, q such that b = pa and c = qa. Then for
all integers u, v,

ub+ vc = upa+ vqa = (up+ vq)a,

which is divisible by a.

Exercise 2. Let p be a prime number. Give the list of all the positive divisors of p2 , then
of p3. More generally, describe, in terms of p and k, the list of positive divisors of pk for
any integer k ≥ 1.

Solution.The divisors of p2 are 1, p, p2. The divisors of p3 are 1, p, p2, p3. More generally,
for k ≥ 1, the divisors of pk are 1, p, p2, . . . , pk.

Exercise 3. For any integers a, b which are not both zero, prove the following properties
of the greatest common divisor:

(a) For any non-zero integer k, gcd(ka, kb) = |k| gcd(a, b).
Solution. First of all, note that gcd(−ka,−kb) = gcd(ka, kb) (that is, the gcd does not
depend on the sign). Thus, we may assume, without loss of generality, that k > 0.

Given this, we present three methods for proving the above identity.
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First method: run the Euclidean algorithm for a and b, to get

a = bq0 + r1, 0 ≤ r1 < b
b = r1q1 + r2, 0 ≤ r2 < r1
r1 = r2q2 + r3, 0 ≤ r3 < r2

...
rn−2 = rn−1qn−1 + rn, 0 ≤ rn < rn−1
rn−1 = rnqn.

Now multiply everything by k, to get:

ka = (kb)q0 + kr1, 0 ≤ kr1 < kb
kb = (kr1)q1 + kr2, 0 ≤ kr2 < kr1
kr1 = (kr2)q2 + kr3, 0 ≤ kr3 < kr2

...
krn−2 = (krn−1)qn−1 + krn, 0 ≤ krn < kn−1
krn−1 = (krn)qn.

We see that we still get a succession of Euclidean divisions (the remainders still satisfy
the right bounds), so that this is the Euclidean algorithm for computing the gcd of ka
and kb. Thus, gcd(ka, kb) is the last non-zero remainder, that is, krn = k gcd(a, b).

Second method: Find u and v such that uka+vkb = gcd(ka, kb). Since the left-hand
side is divisible by k, we find that gcd(ka, kb) must be divisible by k. Moreover, if we
divide by k, we get

ua+ vb =
gcd(ka, kb)

k

Here the left-hand side is divisible by gcd(a, b), so we get that gcd(ka,kb)
k

must be a
multiple of gcd(a, b). Thus, we see that gcd(ka, kb) = k gcd(a, b)m for some positive
integer m. It remains to prove that m = 1. We have that k gcd(a, b)m divides both ka
and kb. This means that gcd(a, b)m divides a and b, so it is a common divisor of a and
b. But gcd(a, b) is the greatest common divisor of a and b, so we must have m = 1.

Third method: Starting like in the previous method, we see that gcd(ka, kb) must
be divisible by k. Now, let d be a common divisor of ka and kb which is a multiple of
k. We may write d = kd′. Since kd′ divides ka and kb, we have that d′ divides a and
b. Thus, any common divisor of d which is a multiple of k is of the form kd′ where d′
is a common divisor of a and b. The largest integer of this form is k gcd(a, b), which is
indeed a common divisor of ka and kb, so we have gcd(ka, kb) = k gcd(a, b).

(b) If d = gcd(a, b), then there exist relatively prime integers a′, b′ such that a = da′ and
b = db′.

Solution. We know that d divides both a and b, so there exist integers a′, b′ such that
a = da′ and b = db′. There are different ways for concluding that a′ and b′ are relatively
prime:
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• Either you use the previous question:

d = gcd(da′, db′) = d gcd(a′, b′)

from which we conclude gcd(a′, b′) = 1.

• Or you use the fact that there exist u and v such that ua + vb = d. Cancelling
out d on both sides, we get ua′ + vb′ = 1, so by Bézout’s theorem a′ and b′ are
relatively prime.

(c) gcd(a, b) = gcd(a+ b, b).

Solution. Let d be a common divisor of a and b. Then d also divides a+ b. Thus, d is
also a common divisor of a+ b and b. Conversely, if d is a common divisor of a+ b and
b, then d also divides (a + b) − b = a, so d is a common divisor of a and b. We have
shown that the sets

{common divisors of a and b}

and
{common divisors of a+ b and b}

are equal. Comparing their largest elements, we get gcd(a, b) = gcd(a+ b, b).

(d) gcd(a, a+ 1) = 1.

Solution. Put d = gcd(a, a+1). If d divides a and a+1, then d divides (a+1)−a = 1.
Since d > 0, we must have d = 1.

Another way of saying this is to write

1× (a+ 1)− 1× a = 1

and conclude by Bézout’s theorem.

(e) For any integer k ≥ 1, gcd(a, a+ k) divides k.

Solution. Put d = gcd(a, a+k. If d divides a and a+k, then d divides (a+k)−a = k.

Exercise 4. 1. Compute gcd(201, 694).

Solution. We run the Euclidean algorithm:

694 = 3× 201 + 91

201 = 2× 91 + 19

91 = 4× 19 + 15

19 = 1× 15 + 4

15 = 3× 4 + 3

4 = 1× 3 + 1

Thus, the gcd is 1.
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2. Find integers u and v such that 694u+ 201v = gcd(201, 694).

Solution. We run the extended Euclidean algorithm:

1 = 4− 1× 3

= 4− 1× (15− 3× 4)

= 4× 4− 1× 15

= 4× (19− 1× 15)− 1× 15

= 4× 19− 5× 15

= 4× 19− 5× (91− 4× 19)

= 24× 19− 5× 91

= 24× (201− 2× 91)− 5× 91

= 24× 201− 53× 91

= 24× 201− 53× (694− 3× 201)

= 183× 201− 53× 694

Thus, u = −53 and v = 183 is a possible solution.
Exercise 5. Recall that for a set A, we denote by |A| the number of its elements. The
Euler function φ : N→ N is the function defined for every positive integer n by

φ(n) = |{k ∈ {1, . . . , n}, k relatively prime to n}|.
1. What is the value of φ(p) for a prime number p ?

Solution. When p is prime, all of the elements in the set {1, . . . , p}, except p itself,
are relatively prime to p. Therefore: φ(p) = p− 1.

2. Compute φ(n) for all integers n in the set {1, 2, . . . , 12}.
Solution. You should get: φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(5) = 4, φ(6) = 2,
φ(7) = 6, φ(8) = 4, φ(9) = 6, φ(10) = 4, φ(11) = 10, φ(12) = 4. (Use the previous
question for all prime numbers!).

Exercise 6. 1. Let n be an integer, and a, b non-zero relatively prime integers. Show
that if both a and b divide n, then the product ab divides n. (Hint: Bézout’s theorem)
Solution. Write n = ka and n = lb. By Bézout, there exist integers u, v such that
ua+ vb = 1. Multiplying both sides by n, we get

uan+ vbn = n.

Now substitute the first occurrence of n by lb, and the second occurrence by ka.
Then we get

uk(ab) + vl(ab) = n.

Thus, the left-hand side is divisible by ab, so n is divisible by ab.

2. Does this remain true if a and b are no longer assumed to be relatively prime?
Solution. No, for example if a = b = 2, both a and b divide 2, but ab does not.
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