Algebra homework 3 Congruences and $\mathbf{Z} / n \mathbf{Z}$

Due October 2nd, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.
Exercise 1. Describe the set $(\mathbf{Z} / 14 \mathbf{Z})^{\times}$. Give an inverse for each of its elements.
Exercise 2. Check that 32 is invertible modulo 1265 and compute an inverse.
Exercise 3. 1. Find all integers $x \in \mathbf{Z}$ satisfying $7 x \equiv 3(\bmod 9)$.
2. Find all integers $x \in \mathbf{Z}$ satisfying $6 x+1 \equiv 4(\bmod 41)$.

Exercise 4. 1. Show that for any $a \in \mathbf{Z}$, the integer a^{2} is congruent either to 0 or to 1 modulo 4.
2. Show that for any $a, b \in \mathbf{Z}$, the integer $a^{2}+b^{2}$ cannot be congruent to 3 modulo 4 .
3. Can 1847 be written as a sum of two squares?

Exercise 5 (Divisibility criteria). Let $a \geq 1$ be an integer. We may write

$$
a=10^{d} a_{d}+10^{d-1} a_{d-1}+\ldots+10 a_{1}+a_{0}
$$

for some $d \geq 0$ so that a_{0}, \ldots, a_{d} are integers in the set $\{0, \ldots, 9\}$, with $a_{d} \neq 0$. The integers a_{d}, \ldots, a_{0} are the digits of the integer a. Show that:

1. The integer a is even if and only if its last digit a_{0} is even.
2. The integer a is divisible by 5 if and only if its last digit a_{0} is either 0 or 5 .
3. The integer a is divisible by 4 if and only if the number $10 a_{1}+a_{0}$ given by its last two digits is divisible by 4 .
4. The integer a is divisible by 3 if and only if the sum $a_{d}+\ldots+a_{0}$ of its digits is divisible by 3 .
5. The integer a is divisible by 9 if and only if the sum $a_{d}+\ldots+a_{0}$ of its digits is divisible by 9 .
6. The integer a is divisible by 11 if and only if the alternating sum

$$
\sum_{k=0}^{d}(-1)^{k} a_{k}=(-1)^{d} a_{d}+(-1)^{d-1} a_{d-1}+\ldots+(-1) a_{1}+a_{0}
$$

of its digits is divisible by 11 .
7. Apply these criteria to determine the decomposition into prime factors of the integer 304920.

