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Algebra homework 3
Congruences and Z/nZ

Due October 2nd, 2019

Please hand in your homework stapled, with your name written on it. All answers have to
be justified.

Exercise 1. Describe the set (Z/14Z)×. Give an inverse for each of its elements.

Solution.

1. The units of Z/14Z are exactly the elements of Z/14Z relatively prime with 14.
Therefore, (Z/14Z)× = {1, 3, 5, 9, 11, 13}.

2. If you used the Euclidean algorithm to compute the gcd of these numbers with 12,
you can apply the extended algorithm to find the inverses, but since the set of units
is very small, its quicker to guess them directly. Answers are:

1−1 = 1, 3−1 = 5, 5−1 = 3, 9−1 = 11, 11−1 = 9, 13−1 = 13.

Exercise 2. Check that 32 is invertible modulo 1265 and compute an inverse.

Solution.

1. We have: 32 = 25 and 2 - 1265. Therefore, 32 and 1265 are relatively prime, i.e. 32
is invertible modulo 1265.

2. An inverse of 32 can be obtained by applying the Euclidean algorithm and then the
extended Euclidean algorithm:

1265 = 32× 39 + 17

39 = 17× 2 + 5

17 = 5× 3 + 2

3 = 2× 1 + 1

1 = 1× 1 + 0

By using the extended Euclidean algorithm, you will obtain:

32× 593 + 1265× (−15) = 1

Therefore 593 is an inverse of 32 modulo 1265.
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Exercise 3. 1. Find all integers x ∈ Z satisfying 7x ≡ 3 (mod 9).

Solution. Note that 4 is an inverse of 7 modulo 9, since 4 × 7 = 28 ≡ 1 (mod 9).
Multiplying both sides by 4, we see that this congruence is equivalent to x ≡ 12
(mod 9), which is the same as x ≡ 3 (mod 9). Thus, the solutions are all of the
integers of the form 3 + 9k, for k ∈ Z.

2. Find all integers x ∈ Z satisfying 6x+ 1 ≡ 4 (mod 41).

Solution. This equation is equivalent to 6x ≡ 3 (mod 41). Note that 7 is an inverse
of 6 modulo 41. Multiplying by 7 on both sides, we get that this congruence is
equivalent to x ≡ 21 (mod 41). Thus, the solutions are the integers of the form
21 + 41k, k ∈ Z.

Exercise 4. 1. Show that for any a ∈ Z, the integer a2 is congruent either to 0 or to 1
modulo 4.

Solution. Let a be an integer. Then there exists k such that a = 2k ( when a is
even) or a = 2k + 1 (when a is odd). In the first case, we have a2 = (2k)2 = 4k2 ≡ 0
(mod 4), and in the second case, we have

a2 = (2k + 1)2 = 4k2 + 4k + 1 ≡ 1 (mod 4).

2. Show that for any a, b ∈ Z, the integer a2 + b2 cannot be congruent to 3 modulo 4.

Solution. Using the result of question 1, the possible values for a2 + b2 modulo 4
are 0 (when both a2 and b2 are congruent to 0 modulo 4), 1 (when one of them is
congruent to 1 modulo 4 and the other to 0) or 2 (when both are congruent to 1
modulo 4).

3. Can 1847 be written as a sum of two squares?

Solution. You can check that 1847 is congruent to 3 modulo 4. Therefore, according
to the previous result, it can’t be written as the sum of two squares.

Exercise 5 (Divisibility criteria). Let a ≥ 1 be an integer. We may write

a = 10dad + 10d−1ad−1 + . . .+ 10a1 + a0

for some d ≥ 0 so that a0, . . . , ad are integers in the set {0, . . . , 9}, with ad 6= 0. The
integers ad, . . . , a0 are the digits of the integer a. Show that:

1. The integer a is even if and only if its last digit a0 is even.

Solution. We have

a ≡ 10dad + 10d−1ad−1 + . . .+ 10a1 + a0 (mod 2).
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But all powers of 10 greater than 1 are even. Therefore:

a ≡ a0 (mod 2)

and it follows that a is even if and only if a0 is even.

2. The integer a is divisible by 5 if and only if its last digit a0 is either 0 or 5.
Solution.

a ≡ 10dad + 10d−1ad−1 + . . .+ 10a1 + a0 (mod 5)

But all powers of 10 greater than 1 are multiples of 5. Therefore:

a ≡ a0 (mod 5)

Tt follows that a is a multiple of 5 if and only if a0 is 0 or 5, since these are the only
non-negative multiples of 5 between 0 and 9.

3. The integer a is divisible by 4 if and only if the number 10a1 + a0 given by its last
two digits is divisible by 4.
Solution. We have

a ≡ 10dad + 10d−1ad−1 + . . .+ 10a1 + a0 (mod 4)

But all powers of 10 greater than 101 are multiples of 4. Therefore:

a ≡ 10a1 + a0 (mod 4)

It follows that a is a multiple of 4 if and only if 10a1 + a0 is a multiple of 4.

4. The integer a is divisible by 3 if and only if the sum ad + . . . + a0 of its digits is
divisible by 3.
Solution. We have

a ≡ 10dad + 10d−1ad−1 + . . .+ 10a1 + a0 (mod 3)

But 10 ≡ 1 (mod 3), so that 10i ≡ 1 (mod 3) for all i ≥ 0. Therefore:

a ≡ ad + · · ·+ a1 + a0 (mod 3)

It follows that a is a multiple of 3 if and only if the sum of its digits is a multiple of
3.

5. The integer a is divisible by 9 if and only if the sum ad + . . . + a0 of its digits is
divisible by 9.
Solution. In the same way as in the previous question, 10 ≡ 1 (mod 9), so that
10i ≡ 1 (mod 9) for all i ≥ 0. Therefore:

a ≡ ad + · · ·+ a1 + a0 (mod 9)

and it follows that a is a multiple of 9 if and only if the sum of its digits is a multiple
of 9.
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6. The integer a is divisible by 11 if and only if the alternating sum

d∑
k=0

(−1)kak = (−1)dad + (−1)d−1ad−1 + . . .+ (−1)a1 + a0

of its digits is divisible by 11.

Solution. We have 10 ≡ −1 (mod 11). Therefore:

a ≡ (−1)dad + (−1)d−1ad−1 + · · · − a1 + a0 (mod 11)

and it follows that a is a multiple of 11 if and only if the alternating sum of its digits
is a multiple of 11.

7. Apply these criteria to determine the decomposition into prime factors of the integer
304920.

Solution. Computing the alternating sum of the digits of this number, we see it
must be divisible by 11. We find 304920 = 11 × 27720. This new number is again
seen to be divisible by 11, so we get 27720 = 11 × 2520. 2520 is not divisible by
11, but we see e.g. that it is divisible by 9 because its sum of digits is 9. We get
2520 = 9× 280. Finally, 280 is easily seen to be equal to 7× 40 = 7× 23 × 5. Thus,
we find 304920 = 23 × 5× 32 × 7× 112.
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