Algebra homework 4 Laws of composition, groups, subgroups

Due October 9th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.

Exercise 1. We define a law of composition $*$ on \mathbf{R} by $x * y=x^{2}+y^{2}$.
(a) Is it associative?
(b) Is it commutative?
(c) Does it have an identity?

Exercise 2. We consider the set $\mathcal{F}(\mathbf{R}, \mathbf{R})$ of functions from \mathbf{R} to \mathbf{R}. We saw in lectures that composition of functions \circ is an associative law of composition on this set, with identity the function id : $\mathbf{R} \rightarrow \mathbf{R}$ defined by $\operatorname{id}(x)=x$. For the following elements of $\mathcal{F}(\mathbf{R}, \mathbf{R})$, determine if they have an inverse for \circ, and if yes, give it.
(a) The function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=5 x+2$.
(b) The function $g: \mathbf{R} \rightarrow \mathbf{R}$ given by $g(x)=x^{2}-3$.
(c) The function $h: \mathbf{R} \rightarrow \mathbf{R}$ given by $h(x)=2 e^{x}$.

Exercise 3. Let G be a group. Show that

$$
Z(G)=\{x \in G, x g=g x \text { for all } g \in G\}
$$

is a subgroup of G. It is called the center of G.
Exercise 4. Let G be a group such that for every $x \in G$ we have $x^{2}=e$, where e is the identity element of g. Show that G must be abelian.

Exercise 5. Prove that

$$
G=\{a+b \sqrt{3}, \quad a, b \in \mathbf{Q}, a, b \text { not both zero }\}
$$

is a subgroup of the group $\left(\mathbf{R}^{\times}, \cdot\right)$.

Exercise 6.

1. Let $O_{n}(\mathbf{R})$ be the set of matrices $A \in M_{n}(\mathbf{R})$ satisfying ${ }^{t} A A=I_{n}$, where ${ }^{t} A$ denotes the transpose of A and I_{n} denotes the identity matrix. Show that any $A \in O_{n}(\mathbf{R})$ is an invertible matrix.
2. Show that $O_{n}(\mathbf{R})$ is a subgroup of $\left(G L_{n}(\mathbf{R}), \cdot\right)$.
