
Margaret Bilu
Office 604

Fall 2019
bilu@cims.nyu.edu

Algebra homework 4
Laws of composition, groups, subgroups

Due October 9th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to
be justified.

Exercise 1. We define a law of composition ∗ on R by x ∗ y = x2 + y2.

(a) Is it associative?

Solution. We compute, for x, y, z ∈ R,

(x ∗ y) ∗ z = (x2 + y2) ∗ z = (x2 + y2)2 + z2 = x4 + 2x2y2 + y4 + z2.

and
x ∗ (y ∗ z) = x ∗ (y2 + z2) = x2 + y4 + 2y2z2 + z4.

These two expressions are easily seen to be not equal, by taking for example x = y = 0
and z = 2. So ∗ is not associative.

(b) Is it commutative?

Solution. We have, for all x, y ∈ R, x ∗ y = x2 + y2 = y2 + x2 = y ∗ x, so the law is
commutative.

(c) Does it have an identity?

Solution. Assume we have an identity e. Then it should satisfy, for all x ∈ R,
x ∗ e = x, that is, x2 + e2 = x. For x = 0, this implies e = 0, and for x = 2, it implies
e2 = 22 − 2 = 2. This gives us a contradiction, so there is no identity element.

Exercise 2. We consider the set F(R,R) of functions from R to R. We saw in lectures
that composition of functions ◦ is an associative law of composition on this set, with
identity the function id : R → R defined by id(x) = x. For the following elements of
F(R,R), determine if they have an inverse for ◦, and if yes, give it.

(a) The function f : R→ R given by f(x) = 5x+ 2.

Solution. Recall that we saw in lectures that an element of F(R,R) is invertible if and
only if the corresponding function has an inverse, that is, if and only if it is bijective.
We therefore only need to check bijectivity of the given functions. The function f is
bijective, with inverse given by f−1(x) = 1

5
(x− 2).

(b) The function g : R→ R given by g(x) = x2 − 3.

Solution. This function is not invertible, because it is not bijective. For example,
injectivity fails because f(1) = f(−1) = −2.
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(c) The function h : R→ R given by h(x) = 2ex.

Solution. This function is not surjective, because its image contains only positive real
numbers, therefore it is not bijective and not invertible.

Exercise 3. Let G be a group. Show that

Z(G) = {x ∈ G, xg = gx for all g ∈ G}

is a subgroup of G. It is called the center of G.

Solution. To show it is a subgroup, we are going to check all the axioms one by one. For
closure, start with x, y ∈ Z(G): then for all g ∈ G, using associativity, we have

(xy)g = x(yg) = x(gy) = (xg)y = (gx)y = g(xy),

so xy ∈ Z(G). By definition, the identity element e satisfies eg = ge = e for all g ∈ G, so
e ∈ Z(G). Finally, for x ∈ Z(G), starting from xg = gx and multiplying by x−1 both on
the right and on the left, we get

x−1xgx−1 = x−1gxx−1

which, using the definition of the inverse, gives gx−1 = x−1g for all g ∈ G. So x−1 ∈ Z(G).
We may conclude that Z(G) is indeed a subgroup of G.

Exercise 4. Let G be a group such that for every x ∈ G we have x2 = e, where e is the
identity element of g. Show that G must be abelian.

Solution. Let a, b ∈ G. Our aim is to show that ab = ba. First of all, remark that since for
all x ∈ G, x2 = x · x = e, we have that every x is its own inverse. In particular, we have
ab = (ab)−1. On the other hand, we know from lectures that (ab)−1 = b−1a−1, so that we
get the equality ab = b−1a−1. Using that a and b are their own inverses, we get the result.

Exercise 5. Prove that

G = {a+ b
√
3, a, b ∈ Q, a, b not both zero}

is a subgroup of the group (R×, ·).

Solution. Closure: For all elements x = a+ b
√
3 and y = c+ d

√
3 of G, we have

xy = (a+ b
√
3)(c+ d

√
3) = (ac+ 3bd) + (ad+ bc)

√
3.

Since a, b, c, d ∈ Q, be have ac+ 3bd ∈ Q and ad+ bc = Q. We must moreover check that
ac + 3bd and ad + bc are not both zero. Indeed, if they were, we would have ac = −3bd
and ad = −bc. To go further, we need to consider several cases.
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Assume first that a is non-zero. Then we have c = −3bd
a

from the first equation, and
substituting it into the second equation, we get

ad =
3b2d

a
,

or, multiplying by a, a2d = 3b2d. Since a is non-zero, if d were zero, the equation ac = −3bd
would force c to be zero, which is impossible since c and d cannot be both zero. Therefore,
d 6= 0, and simplifying by d on both sides, we get a2 = 3b2, which in turn gives

(a+ b
√
3)(a− b

√
3) = 0.

This equation means that either a+ b
√
3 = 0 or a− b

√
3 = 0. Since a 6= 0, we necessarily

have b 6= 0 (otherwise any of these equations would imply a = 0), and therefore either√
3 = −a

b
or
√
3 = a

b
, both of which are impossible since this would mean

√
3 ∈ Q, which

is known to be false.
Assume now that a = 0. Since a and b are not both zero, we have b 6= 0, so the equation
0 = ac = −3bd implies that d must be zero. On the other hand, the equation 0 = ad = −bc
implies c = 0, since b 6= 0. We therefore get c = d = 0, which is a contradiction.
From this, we may conclude that ac + 3bd and ad + bc are not both zero, so that xy is
indeed an element of G.
We have 1 = 1 + 0 ·

√
3, so G contains the identity element 1 of (R×, ·).

Let x = a+ b
√
3 ∈ G. We want to show that x−1 is also an element of G. We have

x−1 =
1

a+ b
√
3
.

Multiplying the numerator and the denominator by a − b
√
3 (remember this trick, it is

often very useful!), which, as noted previously, is non-zero because
√
3 6∈ Q, we get

x−1 =
a− b

√
3

(a+ b
√
3)(a− b

√
3)

=
a− b

√
3

a2 − 3b2
=

a

a2 − 3b2
− b

a2 − 3b2

√
3.

Since a, b ∈ Q, we have a
a2−3b2

∈ Q and − b
a2−3b2

∈ Q. Moreover, they are not both zero
because if they were, this would force a and b to be both zero. Therefore we may conclude
that x−1 ∈ G.
As a conclusion, G is indeed a subgroup of (R×, ·).

Exercise 6.

1. Let On(R) be the set of matrices A ∈ Mn(R) satisfying tAA = In, where tA denotes
the transpose of A and In denotes the identity matrix. Show that any A ∈ On(R) is
an invertible matrix.

Solution. For any A ∈ On(R), we have tAA = In. Taking transposes, we also have
AtA = In. Thus, A is invertible with inverse A−1 =tA.

3



2. Show that On(R) is a subgroup of (GLn(R), ·).
Solution. Closure: Let A and B be two matrices in On(R). Then

t(AB)(AB) = tB tAAB = tBInB = tBB = In,

so AB ∈ On(R).

Identity: We have tInIn = InIn = In, so In ∈ On(R).

Inverses: Let A ∈ On(R). We know that A−1 = tA. Thus,

t(A−1)A−1 = t(tA)tA = A tA = In

(using the identity in the proof of the first question). So A−1 ∈ On(R).
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