Algebra homework 5 Product groups, cyclic groups Due October 16th. 2019

2 40 000000 1000, 2010

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

Exercise 1. Describe the following groups:

(a) The subgroup of $(\mathbf{Z}, +)$ generated by 6.

(b) The subgroup of $(M_n(\mathbf{R}), +)$ generated by $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

- (c) The subgroup of $\mathbf{Z}/12\mathbf{Z}$ generated by 3.
- (d) The subgroup of $\mathbf{Z}/14\mathbf{Z}$ generated by 5.
- (e) The subgroup of (\mathbf{C}^*, \cdot) generated by *i*.
- (f) The subgroup of $(GL_2(\mathbf{R}), \cdot)$ generated by $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.
- **Exercise 2.** 1. Compute the orders of the elements of the group $((\mathbf{Z}/8\mathbf{Z})^{\times}, \cdot)$. Is it cyclic?
 - 2. Show that the group $((\mathbf{Z}/7\mathbf{Z})^{\times}, \cdot)$ is cyclic by finding a generator.

Exercise 3. Show that the matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is an element of infinite order of the group $(GL_2(\mathbf{R}), \cdot)$ of invertible 2×2 matrices with real coefficients. Give a formula for A^n in terms of $n \in \mathbf{Z}$.

- **Exercise 4.** 1. Let r, s be positive integers. Let x be an element of order r in a group G and y an element of order s in a group H. Show that the order of the element (x, y) in the group $G \times H$ is the least common multiple lcm(r, s) of r and s, that is, the smallest positive integer divisible both by r and by s.
 - 2. Show that $\mathbf{Z}/5\mathbf{Z} \times \mathbf{Z}/7\mathbf{Z}$ is cyclic. Give an explicit generator.
 - 3. More generally, show that if $m, n \ge 2$ are relatively prime integers, then $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is cyclic.

Exercise 5. Let

$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

be elements of $GL_2(\mathbf{R})$. Show that A and B have finite orders but that their product AB has infinite order.