Algebra homework 7 Permutations

Due November 6th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

For every $n \geq 1$ we denote by \mathfrak{S}_n the *n*-th symmetric group.

Exercise 1. Consider the following permutations:

- 1. Compute $\sigma_1 \sigma_3$.
- 2. Both σ_1 and σ_3 can be seen as elements of \mathfrak{S}_8 by putting $\sigma_1(8) = \sigma_3(8) = 8$. Compute the products $\sigma_1\sigma_2$ and $\sigma_2\sigma_3$ in \mathfrak{S}_8 .
- 3. Decompose σ_1, σ_2 and σ_3 into products of disjoint cycles, and then write each of them as a product of transpositions.

Exercise 2. Write the following permutations as products of disjoint cycles:

- 1. (2,3,7,5)(2,6,1)
- 2. (1,5,2,6)(2,3)(5,7)(1,3,4)
- $(2,5,4)^{122}$
- 4. $(1,2,3,4)^{-1}$

Exercise 3. Let a_1, \ldots, a_k be distinct elements of $\{1, \ldots, n\}$. Compute the inverse in \mathfrak{S}_n of the cycle (a_1, \ldots, a_k) .

Exercise 4. Compute the sets

$$E = \{ \sigma \in \mathfrak{S}_4, \ \sigma(1) = 4 \}$$

and

$$F = \{ \sigma \in \mathfrak{S}_4, \ \sigma(3) = 3 \}.$$

Are they subgroups of \mathfrak{S}_4 ?

Exercise 5. Prove that if σ is a cycle of odd length, then σ^2 is also a cycle. Show that this is not true for cycles of even length by giving a counterexample.

Exercise 6. Let $\sigma \in \mathfrak{S}_n$.

- 1. Show that σ can be written as a product of at most n-1 transpositions.
- 2. Show that if σ is not a cycle, then σ can be written as a product of at most n-2 transpositions.

Exercise 7. 1. Give a list of all possible orders of an element of \mathfrak{S}_4 .

2. Give a list of all possible orders of an element of \mathfrak{S}_5 .