Algebra homework 7
 Permutations

Due November 6th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.
For every $n \geq 1$ we denote by \mathfrak{S}_{n} the n-th symmetric group.
Exercise 1. Consider the following permutations:
$\sigma_{1}=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 2 & 1 & 4 & 3\end{array}\right), \sigma_{2}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 7 & 6 & 1 & 8 & 4\end{array}\right), \sigma_{3}=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 6 & 1 & 4 & 5 & 2\end{array}\right)$.

1. Compute $\sigma_{1} \sigma_{3}$.

Solution. Using the fact that for every $k, \sigma_{1} \sigma_{3}(k)=\sigma_{1}\left(\sigma_{3}(k)\right)$, you should obtain $\sigma_{1} \sigma 3=$ $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 4 & 5 & 2 & 1 & 6\end{array}\right)$
2. Both σ_{1} and σ_{3} can be seen as elements of \mathfrak{S}_{8} by putting $\sigma_{1}(8)=\sigma_{3}(8)=8$. Compute the products $\sigma_{1} \sigma_{2}$ and $\sigma_{2} \sigma_{3}$ in \mathfrak{S}_{8}.
Solution. You get
$\sigma_{1} \sigma_{2}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 1 & 7 & 3 & 4 & 5 & 8 & 2\end{array}\right)$
and:
$\sigma_{2} \sigma_{3}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 1 & 2 & 7 & 6 & 5 & 4\end{array}\right)$
3. Decompose σ_{1}, σ_{2} and σ_{3} into products of disjoint cycles, and then write each of them as a product of transpositions.
Solution. We have $\sigma_{1}=(1,5)(2,6,4)(3,7)=(1,5)(2,6)(6,4)(3,7)$.
$\sigma_{2}=(1,2,5,6)(4,7,8)=(1,2)(2,5)(5,6)(4,7)(7,8)$.
$\sigma_{3}=(1,7,2,3,6,5,4)=(1,7)(7,2)(2,3)(3,6)(6,5)(5,4)$.
Exercise 2. Write the following permutations as products of disjoint cycles:

1. $(2,3,7,5)(2,6,1)$

Solution. (1, 3, 7, 5, 2, 6)
2. $(1,5,2,6)(2,3)(5,7)(1,3,4)$

Solution. $(1,6)(2,3,4,5,7)$
3. $(2,5,4)^{122}$

Solution. A cycle of length 3 is of order 3, so $(2,5,4)^{122}=(2,5,4)^{120}(2,5,4)^{2}=(2,5,4)^{2}=$ $(2,4,5)$
4. $(1,2,3,4)^{-1}$

Solution. (4, 3, 2, 1)
Exercise 3. Let a_{1}, \ldots, a_{k} be distinct elements of $\{1, \ldots, n\}$. Compute the inverse in \mathfrak{S}_{n} of the cycle $\left(a_{1}, \ldots, a_{k}\right)$.

Exercise 4. Compute the sets

$$
E=\left\{\sigma \in \mathfrak{S}_{4}, \sigma(1)=4\right\}
$$

and

$$
F=\left\{\sigma \in \mathfrak{S}_{4}, \sigma(3)=3\right\} .
$$

Are they subgroups of \mathfrak{S}_{4} ?
Solution. \mathfrak{S}_{4} is composed of the following permutations (decomposed into products of disjoint cycles):

- The identity:
id
- 2-cycles:
(12), (13), (14), (23), (24), (34)
- Products of disjoint 2-cycles:
(12)(34), (13)(24), (14)(23)
- 3 -cycles:
(123), (124), (132), (134), (142), (143), (234), (243)
- 4-cycles:
(1234), (1243), (1324), (1342), (1423), (1432)

Therefore:

$$
\begin{aligned}
E= & \{(14),(14)(23),(142),(143),(1423),(1432)\} \\
& F=\{\mathrm{id},(12),(14),(24),(124),(142)\}
\end{aligned}
$$

E can't be a subgroup of \mathfrak{S}_{4} since it doesn't contain the identity. F is a subgroup of \mathfrak{S}_{4}. Indeed, it's a subset of \mathfrak{S}_{4} containing the identity. It is closed under composition since if $\sigma(3)=3$ and $\sigma^{\prime}(3)=3$, then $\sigma \sigma^{\prime}(3)=3$. It is stable by inversion since if $\sigma(3)=3$, then we also have that $\sigma^{-1}(3)=3$.
Remark: In fact, F is isomorphic to \mathfrak{S}_{3}, the isomorphism being given by replacing 4 by 3 in all permutations involving 4: e.g. (14) $\mapsto(13),(24) \mapsto(23)$ etc.

Exercise 5. Prove that if σ is a cycle of odd length, then σ^{2} is also a cycle. Show that this is not true for cycles of even length by giving a counterexample.

Solution.
Assume that $\sigma=\left(a_{1} a_{2} \ldots a_{2 k+1}\right)$. Then we can check that $\sigma^{2}=\left(a_{1} a_{3} \ldots a_{2 k+1} a_{2} a_{4} \ldots a_{2 k}\right)$.
A counterexample for a cycle of even length would be (1234), for which (1234) ${ }^{2}=(13)(24)$, which is not a cycle. More generally, if $\sigma=\left(a_{1} a_{2} \ldots a_{2 k}\right)$, then $\sigma^{2}=\left(a_{1} a_{3} \ldots a_{2 k-1}\right)\left(a_{2} a_{4} \ldots a_{2 k}\right)$.

Exercise 6. Let $\sigma \in \mathfrak{S}_{n}$.

1. Show that σ can be written as a product of at most $n-1$ transpositions.

Solution.

By the theorem seen in lectures, there exist c_{1}, \ldots, c_{k} disjoint cycles such that $\sigma=$ $c_{1} c_{2} \ldots c_{k}$.
Since the cycles are disjoint, the sum of their lengths (n_{i} for c_{i}) must be at most n.
For any cycle of length n_{i} in this decomposition, we have:

$$
\left(a_{1} a_{2} \ldots a_{n_{i}}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{n_{i}-1} a_{n_{i}}\right) .
$$

This is a decomposition into $n_{i}-1$ transpositions.
At the end of the day, if we perform this on each cycle of the product, σ can be decomposed into a product of $\sum_{i=1}^{k}\left(n_{i}-1\right)=\sum_{i=1}^{k} n_{i}-k \leq n-k \leq n-1$ transpositions.
2. Show that if σ is not a cycle, then σ can be written as a product of at most $n-2$ transpositions.

Solution.

If σ is not a cycle then the decomposition of σ into disjoint cycles contains at least two cycles, that is, we have $k \geq 2$ in the previous proof, which shows that σ can be written as a product of at most $n-2$ transpositions.

Exercise 7. 1. Give a list of all possible orders of an element of \mathfrak{S}_{4}.
Solution. An element of \mathfrak{S}_{4} is either the identity (order 1), or a transposition (order 2), or a product of two transpositions (order 2), or a cycle of length 3 (order 3) or 4 (order $4)$. Therefore, the possible orders are $1,2,3$ or 4 .
2. Give a list of all possible orders of an element of \mathfrak{S}_{5}.

Solution. In the same manner, using decomposition into disjoint cycles, elements of \mathfrak{S}_{5} are of one of the following forms:

> cycle of length $5(a, b, c, d, e)$, order 5 cycle of length $4(a, b, c, d)$, order 4 cycle of length $3(a, b, c)$, order 3 product of a cycle of length 3 and a transposition $(a, b, c)(d, e)$, order 6
product of two transpositions $(a, b)(c, d)$, order 2
transposition (a, b), order 2
identity id, order 1.
Let us check that a product of a cycle of length 3 and of a transposition is indeed of order 6: since disjoint cycles commute, we have
$[(a, b, c)(d, e)]^{2}=(a, b, c)^{2}(d, e)^{2}=(a, c, b)$
$[(a, b, c)(d, e)]^{3}=(a, b, c)^{3}(d, e)^{3}=(d, e)$
$[(a, b, c)(d, e)]^{4}=(a, b, c)^{4}(d, e)^{4}=(a, b, c)$
$[(a, b, c)(d, e)]^{5}=(a, b, c)^{5}(d, e)^{5}=(a, b, c)^{2}(d, e)=(a, c, b)(d, e)$
and $[(a, b, c)(d, e)]^{6}=(a, b, c)^{6}(d, e)^{6}=\mathrm{id}$

