Algebra homework 8 Permutations

Due November 13th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

For every $n \geq 1$ we denote by \mathfrak{S}_n the *n*-th group of permutations.

Exercise 1. Compute the signs of the following permutations:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 6 & 2 & 1 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 1 & 3 & 8 & 6 & 2 & 7 \end{pmatrix}, \quad \sigma_{3} = (1, 2, 3, 4)^{1001}$$

$$\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 6 & 7 & 1 & 5 & 2 \end{pmatrix}, \quad \sigma_{5} = (1, 2, 4)(5, 3), \quad \sigma_{6} = (1, 7)(1, 6)(7, 3)(5, 2).$$

Exercise 2. Let $\sigma \in \mathfrak{S}_n$. Prove that

- 1. $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1})$.
- 2. for all $\alpha \in \mathfrak{S}_n$, $\operatorname{sgn}(\alpha \sigma \alpha^{-1}) = \operatorname{sgn}(\sigma)$.

Exercise 3. Let $n \geq 1$ and let e_1, \ldots, e_n be the usual basis vectors of \mathbf{R}^n , that is, for every $i \in \{1, \ldots, n\}$, we have

$$e_i = (0, \ldots, 0, 1, 0, \ldots 0)$$

where the 1 is in the *i*-th coordinate. For all \mathfrak{S}_n we define the matrix $M_{\sigma} \in M_n(\mathbf{R})$ to be the matrix such that for all $i \in \{1, \ldots, n\}$ its coefficient at column i and row $\sigma(i)$ is 1, all other coefficients being equal to zero. For example, when n = 2, for the transposition (12) in \mathfrak{S}_2 , we have $M_{(12)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- 1. In this question, we study the case n=3. Compute M_{σ} for all $\sigma \in \mathfrak{S}_3$.
- 2. Now we go back to general n. Compute M_{id} where $id \in \mathfrak{S}_n$ is the identity permutation.
- 3. Explain why for all $\sigma \in \mathfrak{S}_n$, there is exactly one coefficient equal to 1 in each row of M_{σ} , as well as in each column.
- 4. What is the image $M_{\sigma}e_i$ of the basis vector e_i by M_{σ} ?
- 5. Show that for all permutations $\sigma, \tau \in \mathfrak{S}_n$, we have $M_{\sigma\tau} = M_{\sigma}M_{\tau}$.
- 6. Show that for every $\sigma \in \mathfrak{S}_n$, M_{σ} is an invertible matrix, by computing its inverse.
- 7. Show that the map $\phi: \mathfrak{S}_n \to (GL_n(\mathbf{R}), \cdot)$ given by $\sigma \mapsto M_{\sigma}$ is well-defined and is an injective group homomorphism.

Exercise 4. Recall that the center of the group \mathfrak{S}_n is defined by

$$Z(\mathfrak{S}_n) = \{ \sigma \in \mathfrak{S}_n | \text{ for all } \alpha \in \mathfrak{S}_n, \ \alpha \sigma = \sigma \alpha \}.$$

- 1. Show that $id \in Z(\mathfrak{S}_n)$.
- 2. Determine $Z(\mathfrak{S}_n)$ for n=1,2,3.
- 3. We now assume $n \geq 3$ and pick $\sigma \in \mathfrak{S}_n$ different from the identity.
 - (a) Show that there exists $i \in \{1, ..., n\}$ such that $\sigma(i) \neq i$. We denote $j = \sigma(i)$.
 - (b) Construct a transposition α such that $\alpha \sigma \alpha^{-1}(i) \neq j$.
 - (c) Conclude that $Z(\mathfrak{S}_n) = \{id\}.$