Algebra homework 8
 Permutations

Due November 13th, 2019
Please hand in your homework stapled, with your name written on it. All answers have to be justified.
For every $n \geq 1$ we denote by \mathfrak{S}_{n} the n-th symmetric group.
Exercise 1. Compute the signs of the following permutations:

$$
\begin{gathered}
\sigma_{1}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 3 & 4 & 6 & 2 & 1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 1 & 3 & 8 & 6 & 2 & 7
\end{array}\right), \sigma_{3}=(1,2,3,4)^{1001} \\
\sigma_{4}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 6 & 7 & 1 & 5 & 2
\end{array}\right), \quad \sigma_{5}=(1,2,4)(5,3), \quad \sigma_{6}=(1,7)(1,6)(7,3)(5,2) .
\end{gathered}
$$

Solution.

We can use the definition of sgn as $(-1)^{r}$, where r is the number of transpositions in a decomposition of σ as a product of transpositions, together with the fact that sgn is a group homomorphism. Recall also that the sign of a k-cycle is $(-1)^{k-1}$. We have:

1. $\operatorname{sgn}\left(\sigma_{1}\right)=\operatorname{sgn}((1,5,2,3,4,6))=(-1)^{5}$, so $\operatorname{sgn}\left(\sigma_{1}\right)=-1$.
2. $\operatorname{sgn}\left(\sigma_{2}\right)=\operatorname{sgn}((1,4,3)(2,5,8,7))=\operatorname{sgn}((1,4,3)) \operatorname{sgn}((2,5,8,7))=(-1)^{2}(-1)^{3}=-1$
3. $\operatorname{sgn}\left(\sigma_{3}\right)=\operatorname{sgn}((1,2,3,4))^{1001}=(-1)^{1001}=-1$
4. $\operatorname{sgn}\left(\sigma_{4}\right)=\operatorname{sgn}((1,4,7,2,3,6,5))=(-1)^{6}=1$.
5. $\operatorname{sgn}\left(\sigma_{5}\right)=\operatorname{sgn}((1,2,4)) \operatorname{sgn}((5,2))=(-1)^{3}=-1$.
6. $\operatorname{sgn}\left(\sigma_{6}\right)=(-1)^{4}=1$.

Exercise 2. Let $\sigma \in \mathfrak{S}_{n}$. Prove that

1. $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$.

Solution.

By definition, $\sigma \sigma^{-1}=\mathrm{id}$.
Since sgn : $\mathfrak{S}_{n} \mapsto\{-1,1\}$ is a group homomorphism,

$$
1=\operatorname{sgn}(\mathrm{id})=\operatorname{sgn}\left(\sigma \sigma^{-1}\right)=\operatorname{sgn}(\sigma) \operatorname{sgn}\left(\sigma^{-1}\right)
$$

So $\operatorname{sgn}(\sigma)$ is the inverse of $\operatorname{sgn}\left(\sigma^{-1}\right)$ in $\{-1,1\}$. This implies $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$.
2. for all $\alpha \in \mathfrak{S}_{n}, \operatorname{sgn}\left(\alpha \sigma \alpha^{-1}\right)=\operatorname{sgn}(\sigma)$.

Solution.
Since sgn is a group homomorphism,

$$
\operatorname{sgn}\left(\alpha \sigma \alpha^{-1}\right)=\operatorname{sgn}(\alpha) \operatorname{sgn}(\sigma) \operatorname{sgn}\left(\alpha^{-1}\right)=\operatorname{sgn}(\sigma)
$$

since $\operatorname{sgn}(\alpha) \operatorname{sgn}\left(\alpha^{-1}\right)=1$ using the first question, and since the group $\{1,-1\}$ is commutative.

Exercise 3. Let $n \geq 1$ and let e_{1}, \ldots, e_{n} be the usual basis vectors of \mathbf{R}^{n}, that is, for every $i \in\{1, \ldots, n\}$, we have

$$
e_{i}=(0, \ldots, 0,1,0, \ldots 0)
$$

where the 1 is in the i-th coordinate. For all \mathfrak{S}_{n} we define the matrix $M_{\sigma} \in M_{n}(\mathbf{R})$ to be the matrix such that for all $i \in\{1, \ldots, n\}$ its coefficient at column i and row $\sigma(i)$ is 1 , all other coefficients being equal to zero. For example, when $n=2$, for the transposition (12) in \mathfrak{S}_{2}, we have $M_{(12)}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

1. In this question, we study the case $n=3$. Compute M_{σ} for all $\sigma \in \mathfrak{S}_{3}$.

Solution.
Using the definition, we have:

$$
\begin{gathered}
M_{\mathrm{id}}=I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], M_{(1,2)}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], M_{(2,3)}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \\
M_{(1,3)}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right], M_{(1,2,3)}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], M_{(1,3,2)}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

2. Now we go back to general n. Compute M_{id} where id $\in \mathfrak{S}_{n}$ is the identity permutation.

Solution.

By definition, $\operatorname{id}(i)=i$ for any i. So:

$$
M_{\mathrm{id}}=I_{n}=\left[\begin{array}{ccccc}
1 & 0 & \ldots & & 0 \\
0 & \ddots & & & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & 0 \\
0 & & \ldots & 0 & 1
\end{array}\right]
$$

3. Explain why for all $\sigma \in \mathfrak{S}_{n}$, there is exactly one coefficient equal to 1 in each row of M_{σ}, as well as in each column.

Solution. Let $j \in\{1, \ldots, n\}$. Then there is a 1 in the i-th cell of the j-th row of M_{σ} if and only if $\sigma(i)=j$. Since σ is bijective, this happens exactly for one value of i, namely $i=\sigma^{-1}(j)$.
Let $i \in\{1, \ldots, n\}$. Then there is a 1 in the j-th cell of the i-th column of M_{σ} if and only if $j=\sigma(i)$, so there is exactly one value of j for which this happens.
4. What is the image $M_{\sigma} e_{i}$ of the basis vector e_{i} by M_{σ} ?

Solution.
By definition, we have: $M_{\sigma} e_{i}=e_{\sigma(i)}$.
5. Show that for all permutations $\sigma, \tau \in \mathfrak{S}_{n}$, we have $M_{\sigma \tau}=M_{\sigma} M_{\tau}$.

Solution.
Using the previous question, we have for all basis vector $e_{i}, M_{\sigma \tau} e_{i}=e_{\sigma \tau(i)}=M_{\sigma} e_{\tau(i)}=$ $M_{\sigma} M_{\tau} e_{i}$.
Therefore, $M_{\sigma \tau}=M_{\sigma} M_{\tau}$, since they coincide on all vectors of a basis.
6. Show that for every $\sigma \in \mathfrak{S}_{n}, M_{\sigma}$ is an invertible matrix, by computing its inverse.

Solution. The result of the previous question combined with question 2 gives us the result since $M_{\sigma} M_{\sigma^{-1}}=M_{\mathrm{id}}=I_{n}$. Therefore, M_{σ} is invertible with inverse $M_{\sigma^{-1}}$.
7. Show that the map $\phi: \mathfrak{S}_{n} \rightarrow\left(G L_{n}(\mathbf{R}), \cdot\right)$ defined by $\sigma \mapsto M_{\sigma}$ is an injective group homomorphism.

Solution.

With the result of question 6 , this map is well defined. With the result of question 5 , it is a group homomorphism. To check that it is injective, it suffices to see that its kernel is trivial. But $\phi(\sigma)=M_{\sigma}=I_{n}$ implies $\sigma\left(e_{i}\right)=e_{i}$ for all i, so $\sigma=\mathrm{id}$.

Exercise 4. Recall that the center of the group \mathfrak{S}_{n} is defined by

$$
Z\left(\mathfrak{S}_{n}\right)=\left\{\sigma \in \mathfrak{S}_{n} \mid \text { for all } \alpha \in \mathfrak{S}_{n}, \alpha \sigma=\sigma \alpha\right\} .
$$

1. Show that id $\in Z\left(\mathfrak{S}_{n}\right)$.

Solution.

By definition of the identity, $\alpha \circ \mathrm{id}=\mathrm{id} \circ \alpha=\alpha$ for any $\alpha \in \mathfrak{S}_{n}$.
So id $\in Z\left(\mathfrak{S}_{n}\right)$.
2. Compute $Z\left(\mathfrak{S}_{n}\right)$ for $n=1,2,3$.

Solution.
For $n=1$, we clearly have $Z\left(\mathfrak{S}_{1}\right)=\{\operatorname{id}\}=\mathfrak{S}_{1}$.
For $n=2, Z\left(\mathfrak{S}_{2}\right)=\{\operatorname{id},(1,2)\}=\mathfrak{S}_{2}$.
For $n=3$, we have $Z\left(\mathfrak{S}_{3}\right)=\{\mathrm{id}\}$. You can check separately for each element of \mathfrak{S}_{3} other than the identity, that it does not belong to the center by finding an element α such that $\sigma \alpha \neq \alpha \sigma$. For example, we have

$$
(1,2,3)(1,2)=(13)
$$

whereas

$$
(1,2)(1,2,3)=(23)
$$

This shows that both $(1,2,3)$ and $(1,2)$ are not in the center. In the same way, we have

$$
(1,3,2)(1,3)=(1,2)
$$

whereas

$$
(1,3)(1,3,2)=(2,3)
$$

This shows that both $(1,3,2)$ and $(1,3)$ are not in the center. Finally, we have

$$
(1,2)(2,3)=(1,2,3) \neq(1,3,2)=(2,3)(1,2),
$$

which shows that $(2,3)$ is not in the center either.
Another way of seeing this is by looking at the Cayley table of \mathfrak{S}_{3} : an element σ of the center has $\alpha \sigma=\sigma \alpha$ for all α. Thus, the elements in the column corresponding to σ and in the row corresponding to σ must be in exactly the same order.

\circ	id	(123)	(132)	(12)	(23)	(13)
id	id	(123)	(132)	(12)	(23)	(13)
(123)	(123)	(132)	id	(13)	(12)	(23)
(132)	(132)	id	(123)	(23)	(13)	(12)
(12)	(12)	(23)	(13)	id	(123)	(132)
(23)	(23)	(13)	(12)	(132)	id	(123)
(13)	(13)	(12)	(23)	(123)	(132)	id

id is the only element for which this is satisfied.
3. We now assume $n \geq 3$ and pick $\sigma \in \mathfrak{S}_{n}$ different from the identity.
(a) Show that there exists $i \in\{1, \ldots, n\}$ such that $\sigma(i) \neq i$. We denote $j=\sigma(i)$.

Solution.
By contradiction, if for all $i \in\{1, \ldots, n\}$ we had $\sigma(i)=i$, we would have $\sigma=\mathrm{id}$, which is not the case. So there exists i such that $\sigma(i)=j \neq i$.
(b) Construct a transposition α such that $\alpha \sigma \alpha^{-1}(i) \neq j$.

Solution.
You can take any transposition which moves j but not i.
Indeed:
For $\alpha=(j, k)$, with $k \neq i$ (which exists since $n \geq 3$), we have: $\alpha \sigma \alpha^{-1}(i)=\alpha \sigma(i)=$ $\alpha(j)=k$.
So $\alpha \sigma \alpha^{-1}(i) \neq j$.
(c) Conclude that $Z\left(\mathfrak{S}_{n}\right)=\{\mathrm{id}\}$.

Solution.
With the last result, for any $\sigma \in \mathfrak{S}_{n}$ different from id, we can find an α such that

$$
\alpha \sigma \alpha^{-1}(i)=k \neq j, j=\sigma(i)
$$

If α and σ were to commute, we would have $\alpha \sigma \alpha^{-1}(i)=\sigma(i)=j$, which we see is not the case.
Therefore, $Z\left(\mathfrak{S}_{n}\right)=\{\mathrm{id}\}$.

