Algebra homework 8 Permutations

Due November 13th, 2019

Please hand in your homework stapled, with your name written on it. All answers have to be justified.

For every $n \geq 1$ we denote by \mathfrak{S}_n the *n*-th symmetric group.

Exercise 1. Compute the signs of the following permutations:

$$\sigma_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 4 & 6 & 2 & 1 \end{pmatrix}, \quad \sigma_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 5 & 1 & 3 & 8 & 6 & 2 & 7 \end{pmatrix}, \quad \sigma_{3} = (1, 2, 3, 4)^{1001}$$
$$\sigma_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 6 & 7 & 1 & 5 & 2 \end{pmatrix}, \quad \sigma_{5} = (1, 2, 4)(5, 3), \quad \sigma_{6} = (1, 7)(1, 6)(7, 3)(5, 2).$$

Solution.

We can use the definition of sgn as $(-1)^r$, where r is the number of transpositions in a decomposition of σ as a product of transpositions, together with the fact that sgn is a group homomorphism. Recall also that the sign of a k-cycle is $(-1)^{k-1}$. We have:

1.
$$\operatorname{sgn}(\sigma_1) = \operatorname{sgn}((1, 5, 2, 3, 4, 6)) = (-1)^5$$
, so $\operatorname{sgn}(\sigma_1) = -1$.

2.
$$\operatorname{sgn}(\sigma_2) = \operatorname{sgn}((1,4,3)(2,5,8,7)) = \operatorname{sgn}((1,4,3))\operatorname{sgn}((2,5,8,7)) = (-1)^2(-1)^3 = -1$$

3.
$$\operatorname{sgn}(\sigma_3) = \operatorname{sgn}((1, 2, 3, 4))^{1001} = (-1)^{1001} = -1$$

4.
$$\operatorname{sgn}(\sigma_4) = \operatorname{sgn}((1, 4, 7, 2, 3, 6, 5)) = (-1)^6 = 1.$$

5.
$$\operatorname{sgn}(\sigma_5) = \operatorname{sgn}((1,2,4))\operatorname{sgn}((5,2)) = (-1)^3 = -1.$$

6.
$$\operatorname{sgn}(\sigma_6) = (-1)^4 = 1.$$

Exercise 2. Let $\sigma \in \mathfrak{S}_n$. Prove that

1. $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1}).$

Solution.

By definition, $\sigma \sigma^{-1} = id$.

Since sgn : $\mathfrak{S}_n \mapsto \{-1, 1\}$ is a group homomorphism,

$$1 = \operatorname{sgn}(\operatorname{id}) = \operatorname{sgn}(\sigma\sigma^{-1}) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\sigma^{-1})$$

So $\operatorname{sgn}(\sigma)$ is the inverse of $\operatorname{sgn}(\sigma^{-1})$ in $\{-1,1\}$. This implies $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\sigma^{-1})$.

2. for all $\alpha \in \mathfrak{S}_n$, $\operatorname{sgn}(\alpha \sigma \alpha^{-1}) = \operatorname{sgn}(\sigma)$.

Solution.

Since sgn is a group homomorphism,

$$\operatorname{sgn}(\alpha\sigma\alpha^{-1}) = \operatorname{sgn}(\alpha)\operatorname{sgn}(\sigma)\operatorname{sgn}(\alpha^{-1}) = \operatorname{sgn}(\sigma)$$

since $sgn(\alpha)sgn(\alpha^{-1}) = 1$ using the first question, and since the group $\{1, -1\}$ is commutative.

Exercise 3. Let $n \ge 1$ and let e_1, \ldots, e_n be the usual basis vectors of \mathbb{R}^n , that is, for every $i \in \{1, \ldots, n\}$, we have

$$e_i = (0, \dots, 0, 1, 0, \dots 0)$$

where the 1 is in the *i*-th coordinate. For all \mathfrak{S}_n we define the matrix $M_{\sigma} \in M_n(\mathbf{R})$ to be the matrix such that for all $i \in \{1, \ldots, n\}$ its coefficient at column *i* and row $\sigma(i)$ is 1, all other coefficients being equal to zero. For example, when n = 2, for the transposition (12) in \mathfrak{S}_2 , we have $M_{(12)} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

1. In this question, we study the case n = 3. Compute M_{σ} for all $\sigma \in \mathfrak{S}_3$. Solution.

Using the definition, we have:

$$M_{\rm id} = I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, M_{(1,2)} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, M_{(2,3)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$
$$M_{(1,3)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, M_{(1,2,3)} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, M_{(1,3,2)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

2. Now we go back to general n. Compute M_{id} where $id \in \mathfrak{S}_n$ is the identity permutation. Solution.

By definition, id(i) = i for any i. So:

$$M_{\rm id} = I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 0 & & \dots & 0 & 1 \end{bmatrix}$$

3. Explain why for all $\sigma \in \mathfrak{S}_n$, there is exactly one coefficient equal to 1 in each row of M_{σ} , as well as in each column.

Solution. Let $j \in \{1, ..., n\}$. Then there is a 1 in the *i*-th cell of the *j*-th row of M_{σ} if and only if $\sigma(i) = j$. Since σ is bijective, this happens exactly for one value of *i*, namely $i = \sigma^{-1}(j)$.

Let $i \in \{1, \ldots, n\}$. Then there is a 1 in the *j*-th cell of the *i*-th column of M_{σ} if and only if $j = \sigma(i)$, so there is exactly one value of *j* for which this happens.

4. What is the image $M_{\sigma}e_i$ of the basis vector e_i by M_{σ} ? Solution.

By definition, we have: $M_{\sigma}e_i = e_{\sigma(i)}$.

5. Show that for all permutations $\sigma, \tau \in \mathfrak{S}_n$, we have $M_{\sigma\tau} = M_{\sigma}M_{\tau}$.

Solution.

Using the previous question, we have for all basis vector e_i , $M_{\sigma\tau}e_i = e_{\sigma\tau(i)} = M_{\sigma}e_{\tau(i)} = M_{\sigma}M_{\tau}e_i$.

Therefore, $M_{\sigma\tau} = M_{\sigma}M_{\tau}$, since they coincide on all vectors of a basis.

6. Show that for every $\sigma \in \mathfrak{S}_n$, M_{σ} is an invertible matrix, by computing its inverse.

Solution. The result of the previous question combined with question 2 gives us the result since $M_{\sigma}M_{\sigma^{-1}} = M_{\rm id} = I_n$. Therefore, M_{σ} is invertible with inverse $M_{\sigma^{-1}}$.

7. Show that the map $\phi : \mathfrak{S}_n \to (GL_n(\mathbf{R}), \cdot)$ defined by $\sigma \mapsto M_{\sigma}$ is an injective group homomorphism.

Solution.

With the result of question 6, this map is well defined. With the result of question 5, it is a group homomorphism. To check that it is injective, it suffices to see that its kernel is trivial. But $\phi(\sigma) = M_{\sigma} = I_n$ implies $\sigma(e_i) = e_i$ for all i, so $\sigma = id$.

Exercise 4. Recall that the center of the group \mathfrak{S}_n is defined by

 $Z(\mathfrak{S}_n) = \{ \sigma \in \mathfrak{S}_n | \text{ for all } \alpha \in \mathfrak{S}_n, \ \alpha \sigma = \sigma \alpha \}.$

1. Show that $id \in Z(\mathfrak{S}_n)$.

Solution.

By definition of the identity, $\alpha \circ id = id \circ \alpha = \alpha$ for any $\alpha \in \mathfrak{S}_n$.

So id
$$\in Z(\mathfrak{S}_n)$$
.

2. Compute $Z(\mathfrak{S}_n)$ for n = 1, 2, 3.

Solution.

For n = 1, we clearly have $Z(\mathfrak{S}_1) = {\text{id}} = \mathfrak{S}_1$.

For n = 2, $Z(\mathfrak{S}_2) = \{ \text{id}, (1,2) \} = \mathfrak{S}_2$.

For n = 3, we have $Z(\mathfrak{S}_3) = \{id\}$. You can check separately for each element of \mathfrak{S}_3 other than the identity, that it does not belong to the center by finding an element α such that $\sigma \alpha \neq \alpha \sigma$. For example, we have

$$(1, 2, 3)(1, 2) = (13)$$

whereas

$$(1,2)(1,2,3) = (23)$$

This shows that both (1,2,3) and (1,2) are not in the center. In the same way, we have

$$(1,3,2)(1,3) = (1,2)$$

whereas

$$(1,3)(1,3,2) = (2,3)$$

This shows that both (1,3,2) and (1,3) are not in the center. Finally, we have

$$(1,2)(2,3) = (1,2,3) \neq (1,3,2) = (2,3)(1,2),$$

which shows that (2,3) is not in the center either.

Another way of seeing this is by looking at the Cayley table of \mathfrak{S}_3 : an element σ of the center has $\alpha \sigma = \sigma \alpha$ for all α . Thus, the elements in the column corresponding to σ and in the row corresponding to σ must be in exactly the same order.

0	id	(123)	(132)	(12)	(23)	(13)
id	id	(123)	(132)	(12)	(23)	(13)
(123)	(123)	(132)	id	(13)	(12)	(23)
(132)	(132)	id	(123)	(23)	(13)	(12)
(12)	(12)	(23)	(13)	id	(123)	(132)
(23)	(23)	(13)	(12)	(132)	id	(123)
(13)	(13)	(12)	(23)	(123)	(132)	id

id is the only element for which this is satisfied.

- 3. We now assume $n \geq 3$ and pick $\sigma \in \mathfrak{S}_n$ different from the identity.
 - (a) Show that there exists $i \in \{1, ..., n\}$ such that $\sigma(i) \neq i$. We denote $j = \sigma(i)$. Solution.

By contradiction, if for all $i \in \{1, ..., n\}$ we had $\sigma(i) = i$, we would have $\sigma = id$, which is not the case. So there exists i such that $\sigma(i) = j \neq i$.

(b) Construct a transposition α such that $\alpha \sigma \alpha^{-1}(i) \neq j$. Solution.

You can take any transposition which moves j but not i.

Indeed:

For $\alpha = (j, k)$, with $k \neq i$ (which exists since $n \geq 3$), we have: $\alpha \sigma \alpha^{-1}(i) = \alpha \sigma(i) = \alpha(j) = k$.

So $\alpha \sigma \alpha^{-1}(i) \neq j$.

(c) Conclude that $Z(\mathfrak{S}_n) = \{ \mathrm{id} \}.$

Solution.

With the last result, for any $\sigma \in \mathfrak{S}_n$ different from id, we can find an α such that

$$\alpha \sigma \alpha^{-1}(i) = k \neq j, \ j = \sigma(i)$$

If α and σ were to commute, we would have $\alpha \sigma \alpha^{-1}(i) = \sigma(i) = j$, which we see is not the case.

Therefore, $Z(\mathfrak{S}_n) = {\text{id}}.$