TD : feuille n°8 Homologie cellulaire

Exercice 1. Espaces projectifs

Calculer l'homologie à coefficients dans \mathbb{Z} des espaces suivants :

- 1. $\mathbb{C}P^n$, $n \geq 0$.
- 2. l'espace $\mathbb{C}P^{\infty} = \bigcup_{n\geq 0} \mathbb{C}P^n$, muni de la topologie telle que \mathcal{U} soit un ouvert de $\mathbb{C}P^{\infty}$ si et seulement si l'intersection $\mathcal{U} \cap \mathbb{C}P^n$ est un ouvert de $\mathbb{C}P^n$ pour tout $n\geq 0$.
- 3. $\mathbb{R}P^n$, $n \geq 0$.

Exercice 2. Surfaces classiques

En utilisant la décomposition cellulaire, calculer l'homologie de :

- 1. la surface orientable S_g de genre g, obtenue comme somme connexe de g copies du tore $S^1 \times S^1$;
- 2. la surface non-orientable S_g' de genre $g \geq 1$, obtenue comme somme connexe de g copies du plan projectif réel $\mathbb{R}P^2$.

Exercice 3. Points antipodaux

Calculer l'homologie des espaces suivants :

- 1. le quotient de S^2 obtenu en identifiant les points antipodaux de son équateur.
- 2. le quotient de S^3 obtenu en identifiant les points antipodaux de son équateur $S^2 \subset S^3$.

Exercice 4. Espaces de Moore

Étant donnés un groupe abélien G et un entier $n \geq 1$, on appelle espace de Moore pour (G, n) un CW-complexe X tel que $H_n(X) \simeq G$ et $\tilde{H}_i(X) = 0$ pour $i \neq n$.

- 1. Construire un espace de Moore pour $G = \mathbb{Z}/m\mathbb{Z}$ et n quelconque.
- 2. Construire un espace de Moore pour G abélien de type fini et n quelconque.
- 3. Construire un espace de Moore pour G et n quelconques.
- 4. Soient $(G_i)_{i\geq 1}$ des groupes abéliens. Construire un espace topologique connexe par arcs X tel que $H_i(X;\mathbb{Z}) = G_i$ pour tout $i\geq 1$.

Exercice 5. Homologie avec coefficients

Soit G un groupe abélien.

- 1. Calculer les groupes d'homologie à coefficients dans G de $\mathbb{C}P^n$.
- 2. Calculer les groupes d'homologie à coefficients dans G de $\mathbb{R}P^n$.
- 3. Trouver deux espaces qui ont même homologie à coefficients dans $\mathbb Q$ mais pas à coefficients dans $\mathbb Z$.
- 4. Trouver deux espaces qui ont même homologie à coefficients dans $\mathbb{Z}/2\mathbb{Z}$ mais pas à coefficients dans \mathbb{Z} .

Exercice 6. Caractéristique d'Euler

Soit X un CW-complexe fini. Pour tout $k \geq 0$, on note c_k le nombre de k-cellules de X. La caractéristique d'Euler de X est l'entier

$$\chi(X) = \sum_{i>0} (-1)^i c_i.$$

1. Soit F un corps. Montrer que $\chi(X)$ peut également être calculée par la formule

$$\chi(X) = \sum_{i>0} (-1)^i \dim_F H_i(X, F).$$

- 2. Calculer la caractéristique d'Euler des surfaces S_g et S'_q .
- 3. Donner une condition nécessaire et suffisante sur les entiers g et h pour qu'il existe un revêtement de S_g par S_h .
- 4. On suppose que le CW-complexe fini X s'écrit comme l'union de deux sous-complexes A et B. Montrer que

$$\chi(X) = \chi(A) + \chi(B) - \chi(A \cap B).$$

5. Soient X et Y des CW-complexes finis. Expliquer comment $X \times Y$ peut être muni d'une structure de CW-complexe fini, et montrer que $\chi(X \times Y) = \chi(X)\chi(Y)$.

Exercice 7. Homologie cellulaire d'un produit

Calculer l'homologie à coefficients dans \mathbb{Z} de $S^m \times S^n$ pour $m, n \geq 1$.