Algebra homework 1 Reminders on set theory

1 Sets

Exercise 1. In the set $X = \mathbf{R}$, consider the intervals $A = [2, \infty)$ and B = [0, 5). Compute the following sets:

- (a) A^c ,
- (b) $A \cup B$,
- (c) $A \cap B$,
- (d) $A \setminus B$,
- (e) $B \setminus A$.

Exercise 2. Let A and B be two subsets of a set X. Prove the De Morgan laws:

- (a) $(A \cap B)^c = A^c \cup B^c$
- (b) $(A \cup B)^c = A^c \cap B^c$.

2 Mappings

Exercise 3. Let $f : \mathbf{R} \to \mathbf{R}$ be the map $f : x \mapsto x^2$. Compute the inverse image sets $f^{-1}(A)$ of the following sets A:

- (a) [0,1],
- (b) $\{-2\},$
- (c) $\{-1, 0, 4\},\$
- (d) $[0, +\infty)$.

Exercise 4. Let $f: X \to Y$ be a map between sets.

1. For any two subsets A, B of X, show that

$$f(A) \cup f(B) = f(A \cup B).$$

2. (a) Show that in general

$$f(A) \cap f(B) \neq f(A \cap B) \tag{1}$$

by giving a counterexample. (Hint: draw a picture)

(b) Show that we do get equality in (1) if we furthermore assume that f is injective.

Exercise 5. Let $f: X \to Y$ be a map between sets.

1. For any two subsets A, B of Y, show that

$$f^{-1}(A) \cup f^{-1}(B) = f^{-1}(A \cup B).$$

2. For any two subsets A, B of Y, show that

$$f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B).$$

Exercise 6. Let $f: X \to Y$ and $g: Y \to Z$ be maps between sets.

- 1. Show that if f and g are surjective, then so is $g \circ f$.
- 2. Show that if f and g are injective, then so if $g \circ f$.

3 Equivalence relations

Exercise 7. For an element $x = (x_1, x_2)$ of the plane \mathbf{R}^2 , we denote by $||x|| = \sqrt{x_1^2 + x_2^2}$ its Euclidean norm. Let R be the relation on the plane \mathbf{R}^2 given by

$$x \sim_R y$$
 if $||x|| = ||y||$

Show that R is an equivalence relation and describe its equivalence classes.

Exercise 8. We define a relation R on the subsets of a nonempty set X by

$$A \sim_R B$$
 if $A \cap B = \emptyset$.

- 1. Is R reflexive?
- 2. Is it symmetric?
- 3. Is it transitive?

You must justify your answers.