Algebra homework 10 Permutations, cosets

All answers have to be justified.
Exercise 1. Compute the left and the right cosets of the following subgroups H_{i} of the following groups G_{i}.

1. $H_{1}=\langle 4\rangle$ (subgroup generated by 4) in $G_{1}=\mathbf{Z} / 12 \mathbf{Z}$.
2. $H_{2}=5 \mathbf{Z}$ in $G_{2}=\mathbf{Z}$.
3. $H_{3}=\{\mathrm{id},(1,2,3),(1,3,2)\}$ in $G_{3}=\mathfrak{S}_{3}$.
4. $H_{4}=\{\mathrm{id},(1,3)\}$ in $G_{4}=\mathfrak{S}_{3}$.
5. $H_{5}=\mathfrak{A}_{n}$ in $G_{5}=\mathfrak{S}_{n}$ (Hint: show that it cannot have more than two different cosets).

Exercise 2. Let G be a group and H a subgroup of G. We assume that H is such that for all $h \in H$ and all $g \in G$, the product $g h g^{-1}$ is an element of H (we say that H is a normal subgroup of G).

1. Show that all subgroups of an abelian group are normal.
2. Show that for all $g \in G, g H=H g$, that is, the right and the left cosets of H are the same.
3. Find an example of a group G and of a subgroup H of G which is not normal.

Exercise 3. Let H and K be subgroups of a group G.

1. Show that $H \cap K$ is a subgroup of G.
2. Show that for every $g \in G, g H \cap g K$ is a coset of $H \cap K$ in G.

Exercise 4. Let $n \geq 2$ and let $\phi: \mathfrak{S}_{n} \rightarrow\{1,-1\}$ be a non-trivial group homomorphism. The aim of this exercise is to prove that ϕ is equal to the sgn homomorphism.

1. Show that there exists at least one transposition $\tau \in \mathfrak{S}_{n}$ such that $\phi(\tau)=-1$.
2. Show that for all permutations $\alpha, \sigma \in \mathfrak{S}_{n}$, we have $\phi\left(\sigma \alpha \sigma^{-1}\right)=\phi(\alpha)$.
3. Show that for any transposition $\tau^{\prime} \in \mathfrak{S}_{n}$, we have $\phi\left(\tau^{\prime}\right)=-1$.
4. Deduce that $\phi=\operatorname{sgn}$.

Exercise 5. Let $n \geq 3$ be an integer. The aim of this exercise is to show that \mathfrak{A}_{n} is generated by cycles of length 3 of the form $(1,2, i), i \in\{3, \ldots, n\}$.

1. Check that this is true for $n=3$.
2. Show that for all distinct $a, b, c \in\{2, \ldots, n\}$, we have the equality $(a, b, c)=(1, a, b)(1, b, c)$.
3. Deduce that \mathfrak{A}_{n} is generated by cycles of length 3 of the form $(1, i, j), i, j \in\{2, \ldots, n\}$.
4. Let $\sigma \in \mathfrak{A}_{n}$ be a cycle of length 3 containing 1 and 2 . Show that either σ or σ^{-1} is of the form $(1,2, i)$.
5. Let $\sigma \in \mathfrak{A}_{n}$ be a cycle of the form $(1, i, j)$. Show that we have

$$
(1, i, j)=(1,2, j)^{-1}(1,2, i)(1,2, j)
$$

6. Conclude that \mathfrak{A}_{n} is generated by cycles of length 3 of the form $(1,2, i)$.
