Algebra homework 2
 Arithmetic on the set of integers

Notation: For a set A with a finite number of elements, we denote by $|A|$ the number of its elements.

Exercise 1. Prove the following properties:
(a) For every integer a, the integers $1,-1, a$ and $-a$ divide a.
(b) 0 does not divide any non-zero integer.
(c) All integers divide 0 .
(d) If a, b, c are integers such that $a \mid b$ and $b \mid c$ then $a \mid c$.
(e) If a, b are non-zero integers, then $a \mid b$ and $b \mid a$ implies $a=b$ or $a=-b$.

Exercise 2. Give the list of the positive divisors of the following numbers:
(a) 20
(b) 57

Exercise 3. Let p be a prime number, that is, a positive number such that its only positive divisors are 1 and p. Give the list of all the positive divisors of p^{2}, then of p^{3}. More generally, describe, in terms of p and k, the list of positive divisors of p^{k} for any integer $k \geq 1$.

Exercise 4. Let n be a positive integer. Show that the smallest integer $d>1$ dividing n is a prime number.

Exercise 5. Let a, b be two integers, not both zero. Recall that in the lectures, their greatest common divisor $\operatorname{gcd}(a, b)$ has been defined as the largest positive number d which divides both a and b. Show that any non-zero integer e dividing both a and b divides $\operatorname{gcd}(a, b)$.

Exercise 6. For any integers a, b which are not both zero, prove the following properties of the greatest common divisor:
(a) $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
(b) For any integer $k \geq 1, \operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$.
(c) If $d=\operatorname{gcd}(a, b)$, then there exist relatively prime integers a^{\prime}, b^{\prime} such that $a=d a^{\prime}$ and $b=d b^{\prime}$.
(d) $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+b, b)$.
(e) $\operatorname{gcd}(a, a+1)=1$
(f) For any integer $k \geq 1, \operatorname{gcd}(a, a+k)$ divides k.

Exercise 7. Find gcd $(231,163)$, as well as integers u, v such that

$$
231 u+163 v=\operatorname{gcd}(231,163)
$$

Exercise 8. The Euler function $\phi: \mathbf{N} \rightarrow \mathbf{N}$ is the function defined for every positive integer n by

$$
\phi(n)=\mid\{k \in\{1, \ldots, n\}, k \text { relatively prime to } n\} \mid .
$$

1. What is the value of $\phi(p)$ for a prime number p ?
2. What is, in terms of k, the value of $\phi\left(p^{k}\right)$ where p is a prime number and $k \geq 1$ an integer?
3. Compute $\phi(n)$ for all integers n in the set $\{1,2, \ldots, 12\}$.

Exercise 9. Let n be an integer, and a, b non-zero relatively prime integers. Show that if both a and b divide n, then the product $a b$ divides n. Does this remain true if a and b are no longer assumed to be relatively prime?

