Algebra homework 2 Arithmetic on the set of integers

Notation: For a set A with a finite number of elements, we denote by |A| the number of its elements.

Exercise 1. Prove the following properties:

- (a) For every integer a, the integers 1, -1, a and -a divide a.
- (b) 0 does not divide any non-zero integer.
- (c) All integers divide 0.
- (d) If a, b, c are integers such that a|b and b|c then a|c.
- (e) If a, b are non-zero integers, then a|b and b|a implies a = b or a = -b.

Exercise 2. Give the list of the positive divisors of the following numbers:

(a) 20

(b) 57

Exercise 3. Let p be a prime number, that is, a positive number such that its only positive divisors are 1 and p. Give the list of all the positive divisors of p^2 , then of p^3 . More generally, describe, in terms of p and k, the list of positive divisors of p^k for any integer $k \ge 1$.

Exercise 4. Let n be a positive integer. Show that the smallest integer d > 1 dividing n is a prime number.

Exercise 5. Let a, b be two integers, not both zero. Recall that in the lectures, their greatest common divisor gcd(a, b) has been defined as the largest positive number d which divides both a and b. Show that any non-zero integer e dividing both a and b divides gcd(a, b).

Exercise 6. For any integers a, b which are not both zero, prove the following properties of the greatest common divisor:

- (a) gcd(a, b) = gcd(b, a).
- (b) For any integer $k \ge 1$, gcd(ka, kb) = k gcd(a, b).
- (c) If $d = \gcd(a, b)$, then there exist relatively prime integers a', b' such that a = da' and b = db'.
- (d) gcd(a, b) = gcd(a + b, b).

- (e) gcd(a, a+1) = 1
- (f) For any integer $k \ge 1$, gcd(a, a + k) divides k.

Exercise 7. Find gcd(231, 163), as well as integers u, v such that

$$231u + 163v = \gcd(231, 163).$$

Exercise 8. The *Euler function* $\phi : \mathbf{N} \to \mathbf{N}$ is the function defined for every positive integer *n* by

 $\phi(n) = |\{k \in \{1, \dots, n\}, k \text{ relatively prime to } n\}|.$

- 1. What is the value of $\phi(p)$ for a prime number p?
- 2. What is, in terms of k, the value of $\phi(p^k)$ where p is a prime number and $k \ge 1$ an integer?
- 3. Compute $\phi(n)$ for all integers n in the set $\{1, 2, \dots, 12\}$.

Exercise 9. Let n be an integer, and a, b non-zero relatively prime integers. Show that if both a and b divide n, then the product ab divides n. Does this remain true if a and b are no longer assumed to be relatively prime?