Algebra homework 3 Congruences

Exercise 1. Describe the set $(\mathbf{Z}/12\mathbf{Z})^{\times}$. Give an inverse for each of its elements.

Exercise 2. Check 32 is invertible modulo 1265 and compute an inverse.

Exercise 3. 1. Find all integers $x \in \mathbb{Z}$ satisfying $9x \equiv 3 \pmod{5}$.

2. Find all integers $x \in \mathbb{Z}$ satisfying $5x + 1 \equiv 4 \pmod{26}$.

- **Exercise 4.** 1. Show that for any $a \in \mathbb{Z}$, the integer a^2 is congruent either to 0 or to 1 modulo 4.
 - 2. Show that for any $a, b \in \mathbb{Z}$, the integer $a^2 + b^2$ cannot be congruent to 3 modulo 4.
 - 3. Can 1735 be written as a sum of two squares?

Exercise 5. Show that the square of an integer never has 2,3,7 or 8 as its last digit. (Hint: work modulo 10)

Exercise 6 (Divisibility criteria). Let $a \ge 1$ be an integer. We may write

$$a = 10^{d}a_{d} + 10^{d-1}a_{d-1} + \ldots + 10a_{1} + a_{0}$$

for some $d \ge 0$ so that a_0, \ldots, a_d are integers in the set $\{0, \ldots, 9\}$, with $a_d \ne 0$. The integers $a_d, \ldots a_0$ are the digits of the integer a. Show that:

- 1. The integer a is even if and only if its last digit a_0 is even.
- 2. The integer a is divisible by 5 if and only if its last digit a_0 is either 0 or 5.
- 3. The integer a is divisible by 4 if and only if the number $10a_1 + a_0$ given by its last two digits is divisible by 4.
- 4. The integer a is divisible by 3 if and only if the sum $a_d + \ldots + a_0$ of its digits is divisible by 3.
- 5. The integer a is divisible by 9 if and only if the sum $a_d + \ldots + a_0$ of its digits is divisible by 9.
- 6. The integer a is divisible by 11 if and only if the alternating sum

$$\sum_{k=0}^{d} (-1)^k a_k = (-1)^d a_d + (-1)^{d-1} a_{d-1} + \ldots + (-1)a_1 + a_0$$

of its digits is divisible by 11.

7. Apply these criteria to determine the decomposition into prime factors of the integer 152460.