Algebra homework 4 Laws of composition, groups, subgroups

Exercise 1. We define a law of composition $*$ on \mathbf{R} by $x * y=x-y$.
(a) Is it associative?
(b) Is it commutative?
(c) Does it have an identity?

Exercise 2. We consider the set $\mathcal{F}(\mathbf{R}, \mathbf{R})$ of functions from \mathbf{R} to \mathbf{R}. We saw in lectures that the composition of functions \circ is an associative law of composition on this set, with identity the function id : $\mathbf{R} \rightarrow \mathbf{R}$ defined by $\operatorname{id}(x)=x$. For the following elements of $\mathcal{F}(\mathbf{R}, \mathbf{R})$, determine if they have an inverse for \circ, and if yes, give it.
(a) The function $f: \mathbf{R} \rightarrow \mathbf{R}$ given by $f(x)=3 x+2$.
(b) The function $g: \mathbf{R} \rightarrow \mathbf{R}$ given by $g(x)=x^{2}-1$.
(c) The function $h: \mathbf{R} \rightarrow \mathbf{R}$ given by $h(x)=e^{x}$.

Exercise 3. Determine the set $(\mathbf{Z} / 8 \mathbf{Z})^{\times}$and give the Cayley table of the group $\left((\mathbf{Z} / 8 \mathbf{Z})^{\times}, \odot\right)$.
Exercise 4. If $n>2$, show that the group of units $(\mathbf{Z} / n \mathbf{Z})^{\times}$of $\mathbf{Z} / n \mathbf{Z}$ contains an element a such that $a \neq 1$ but $a^{2}=1$. (Here 1 denotes the identity element of $(\mathbf{Z} / n \mathbf{Z})^{\times}$, that is, the congruence class of the integer 1 modulo n.)

Exercise 5. Let $S=\mathbf{R} \backslash\{-1\}$ and define a law of composition on S by $x * y=x+y+x y$. Show that $(S, *)$ is an abelian group. Can you explain why we had to remove -1 from \mathbf{R} to make this work?

Exercise 6. Let G be a group such that for every $x \in G$ we have $x^{2}=e$, where e is the identity element of g. Show that G must be abelian.

Exercise 7. Let G be a group with law of composition *. Show that

$$
Z(G)=\{x \in G, x * g=g * x \text { for all } g \in G\}
$$

is a subgroup of G. It is called the center of G.
Exercise 8. Prove that

$$
G=\{a+b \sqrt{2}, \quad a, b \in \mathbf{Q}, a, b \text { not both zero }\}
$$

is a subgroup of the group $\left(\mathbf{R}^{\times}, \cdot\right)$.

