Algebra homework 4 Laws of composition, groups, subgroups

Exercise 1. We define a law of composition * on **R** by x * y = x - y.

- (a) Is it associative?
- (b) Is it commutative?
- (c) Does it have an identity?

Exercise 2. We consider the set $\mathcal{F}(\mathbf{R}, \mathbf{R})$ of functions from \mathbf{R} to \mathbf{R} . We saw in lectures that the composition of functions \circ is an associative law of composition on this set, with identity the function id : $\mathbf{R} \to \mathbf{R}$ defined by id(x) = x. For the following elements of $\mathcal{F}(\mathbf{R}, \mathbf{R})$, determine if they have an inverse for \circ , and if yes, give it.

(a) The function $f : \mathbf{R} \to \mathbf{R}$ given by f(x) = 3x + 2.

- (b) The function $g: \mathbf{R} \to \mathbf{R}$ given by $g(x) = x^2 1$.
- (c) The function $h : \mathbf{R} \to \mathbf{R}$ given by $h(x) = e^x$.

Exercise 3. Determine the set $(\mathbb{Z}/8\mathbb{Z})^{\times}$ and give the Cayley table of the group $((\mathbb{Z}/8\mathbb{Z})^{\times}, \odot)$.

Exercise 4. If n > 2, show that the group of units $(\mathbf{Z}/n\mathbf{Z})^{\times}$ of $\mathbf{Z}/n\mathbf{Z}$ contains an element a such that $a \neq 1$ but $a^2 = 1$. (Here 1 denotes the identity element of $(\mathbf{Z}/n\mathbf{Z})^{\times}$, that is, the congruence class of the integer 1 modulo n.)

Exercise 5. Let $S = \mathbf{R} \setminus \{-1\}$ and define a law of composition on S by x * y = x + y + xy. Show that (S, *) is an abelian group. Can you explain why we had to remove -1 from \mathbf{R} to make this work?

Exercise 6. Let G be a group such that for every $x \in G$ we have $x^2 = e$, where e is the identity element of g. Show that G must be abelian.

Exercise 7. Let G be a group with law of composition *. Show that

$$Z(G) = \{ x \in G, \ x * g = g * x \text{ for all } g \in G \}$$

is a subgroup of G. It is called the *center* of G.

Exercise 8. Prove that

 $G = \{a + b\sqrt{2}, a, b \in \mathbf{Q}, a, b \text{ not both zero}\}$

is a subgroup of the group $(\mathbf{R}^{\times}, \cdot)$.