Algebra homework 5 Product groups, cyclic groups

Exercise 1. Show that every cyclic subgroup of a group G is abelian.
Exercise 2. Describe the following groups:
(a) The subgroup of $(\mathbf{Z},+)$ generated by 5 .
(b) The subgroup of $\left(M_{n}(\mathbf{R}),+\right)$ generated by the $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
(c) The subgroup of $\mathbf{Z} / 12 \mathbf{Z}$ generated by 4 .
(d) The subgroup of $\mathbf{Z} / 14 \mathbf{Z}$ generated by 3 .
(e) The subgroup of $\left(\mathbf{C}^{*}, \cdot\right)$ generated by i.
(f) The subgroup of $\left(G L_{2}(\mathbf{R}), \cdot\right)$ generated by $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Exercise 3. 1. Compute the orders of the elements of the $\operatorname{group}\left((\mathbf{Z} / 8 \mathbf{Z})^{\times}, \cdot\right)$. Is it cyclic?
2. Show that the group $\left((\mathbf{Z} / 7 \mathbf{Z})^{\times}, \cdot\right)$ is cyclic by finding a generator.

Exercise 4. Show that the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is an element of infinite order of the group $\left(G L_{2}(\mathbf{R}), \cdot\right)$ of invertible 2×2 matrices with real coefficients. Give a formula for A^{n} in terms of $n \in \mathbf{Z}$.

Exercise 5. Let a and b be elements of a group G.

1. Show that a and a^{-1} have the same order.
2. Show that $a b$ and $b a$ have the same order.

Exercise 6. Let a and b be elements of a group G. Assume that each of the elements a, b and $a b$ has order 2 . Show that the set $H=\{1, a, b, a b\}$ is a subgroup of G, of order exactly 4.
Exercise 7. Let r, s be positive integers. Let x be an element of order r in a group G and y an element of order s in a group H. Show that the order of the element (x, y) in the group $G \times H$ is the least common multiple $\operatorname{lcm}(r, s)$ of r and s, that is, the smallest positive integer divisible both by r and by s.

Exercise 8. Let

$$
A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & -1
\end{array}\right)
$$

be elements of $G L_{2}(\mathbf{R})$. Show that A and B have finite orders but that their product $A B$ has infinite order.

