Algebra homework 6 Homomorphisms, isomorphisms

Exercise 1. Show that the following maps are group homomorphisms and compute their kernels.
(a) $f:\left(\mathbf{R}^{\times}, \cdot\right) \rightarrow\left(G L_{2}(\mathbf{R}), \cdot\right)$ given by

$$
f(x)=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right)
$$

(b) $g:(\mathbf{R},+) \rightarrow\left(G L_{2}(\mathbf{R}), \cdot\right)$ given by

$$
g(x)=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)
$$

(c) $h:\left(\mathbf{R}^{2},+\right) \rightarrow(\mathbf{R},+)$ given by $h(x, y)=x$.
(d) The complex conjugation map $j:(\mathbf{C},+) \rightarrow(\mathbf{C},+)$, given by $j(x+i y)=x-i y$.
(e) $k: G \rightarrow G$ given by $k(x)=x^{n}$ if G is an abelian group (written in multiplicative notation). What if G is not abelian?

Exercise 2. Let $\phi: G \rightarrow H$ be a group homomorphism.

1. Show that if G is abelian, then $\operatorname{Im}(\phi)$ is also abelian.
2. Show that if G is cyclic, then $\operatorname{Im}(\phi)$ is also cyclic.

Exercise 3. Let T denote the group of invertible upper triangular 2×2 matrices

$$
A=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), \quad a, b, d \in \mathbf{R}, a d \neq 0
$$

1. Show that T is a subgroup of $G L_{2}(\mathbf{R})$.
2. Let $\phi: T \rightarrow \mathbf{R}^{\times}$be the map given by sending a matrix A as above to a^{2}. Show that ϕ is a homomorphism, and give its kernel and image.

Exercise 4. Show that all the non-trivial subgroups of \mathbf{Z} are isomorphic to \mathbf{Z}.
Exercise 5. Recall that the group $(\mathbf{Z} / 8 \mathbf{Z})^{\times}$is of order 4. Is it isomorphic to $\mathbf{Z} / 4 \mathbf{Z}$? If not, find another group of order 4 it is isomorphic to.

Exercise 6. 1. Show that for any $a \in \mathbf{Z}$, the map $\phi: \mathbf{Z} \rightarrow \mathbf{Z}$ defined by $\phi(n)=a n$ is a group homomorphism. Give its kernel and image.
2. Conversely, show that a homomorphism $\phi: \mathbf{Z} \rightarrow \mathbf{Z}$ is of the form $\phi(n)=a n$ for some $a \in \mathbf{Z}$. Thus, the homomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$ are exactly the maps $n \mapsto a n$.
3. Determine all the automorphisms of \mathbf{Z}, that is, the isomorphisms $\mathbf{Z} \rightarrow \mathbf{Z}$.

Exercise 7. Let G and H be two groups. Show that $G \times H$ is isomorphic to $H \times G$.
Exercise 8. Are the groups $\mathbf{Z} / 6 \mathbf{Z}$ and $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 3 \mathbf{Z}$ isomorphic? Justify your answer by either constructing an isomorphism or explaining why it does not exist.

