Algebra homework 7 Groups

Exercise 1. Prove that if a group G has no proper subgroups, then G is a cyclic group.

Exercise 2. Show that of p is prime, $\mathbf{Z}/p\mathbf{Z}$ has no proper subgroups.

Exercise 3. An *automorphism* of a group G is an isomorphism from G to itself.

- 1. Let $n \geq 1$ be an integer. Prove that for all $B \in GL_n(\mathbf{R})$, the map $A \mapsto BAB^{-1}$ is an automorphism of $SL_n(\mathbf{R})$.
- 2. We denote by $\operatorname{Aut}(G)$ the set of automorphisms of the group G. Show that $(\operatorname{Aut}(G), \circ)$ is a group.
- 3. Find $\operatorname{Aut}(G)$ when
 - (a) $G = \mathbf{Z}/2\mathbf{Z}$,
 - (b) $G = \mathbf{Z}$,
 - (c) $G = \mathbf{Z}/6\mathbf{Z}$.
- 4. Find two non-isomorphic groups G and H such that Aut(G) and Aut(H) are isomorphic.
- 5. Let G be a group and $g \in G$. Define a map $i_g : G \to G$ by

$$i_g(x) = gxg^{-1}.$$

Prove that i_g defines an automorphism of G. Such an automorphism is called an *inner auto*morphism. The set of all inner automorphisms is denoted by Inn(G).

- 6. Prove that Inn(G) is a subgroup of Aut(G).
- 7. What is Inn(G) if G is abelian?
- 8. Find an example of an automorphism of some group G which is not an inner automorphism.
- 9. For a group G, define a map $i: G \to \operatorname{Aut}(G)$ by sending $g \in G$ to the automorphism i_g defined above. Show that i is a group homomorphism. Show that its kernel is the center of G (see homework 4). What is its image?

Exercise 4. In this exercise, we want to describe the homomorphisms $f : (\mathbf{Q}, +) \to (\mathbf{Q}, +)$, where \mathbf{Q} is the set of rational numbers.

- 1. Show that for all $x \in \mathbf{Q}$ and for all $n \in \mathbf{Z}$, we have f(nx) = nf(x).
- 2. Deduce from this that for any rational number $\frac{p}{q}$, we have

$$f\left(\frac{p}{q}\right) = \frac{f(p)}{q}.$$

- 3. Conclude that f is of the form $x \mapsto ax$ for some rational number a.
- 4. Check that any map of this form is indeed a homomorphism.
- 5. Deduce $\operatorname{Aut}(\mathbf{Q})$.