Algebra homework 7
 Groups

Exercise 1. Prove that if a group G has no proper subgroups, then G is a cyclic group.
Exercise 2. Show that of p is prime, $\mathbf{Z} / p \mathbf{Z}$ has no proper subgroups.
Exercise 3. An automorphism of a group G is an isomorphism from G to itself.

1. Let $n \geq 1$ be an integer. Prove that for all $B \in G L_{n}(\mathbf{R})$, the map $A \mapsto B A B^{-1}$ is an automorphism of $S L_{n}(\mathbf{R})$.
2. We denote by $\operatorname{Aut}(G)$ the set of automorphisms of the group G. Show that $(\operatorname{Aut}(G), \circ)$ is a group.
3. Find $\operatorname{Aut}(G)$ when
(a) $G=\mathbf{Z} / 2 \mathbf{Z}$,
(b) $G=\mathbf{Z}$,
(c) $G=\mathbf{Z} / 6 \mathbf{Z}$.
4. Find two non-isomorphic groups G and H such that $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$ are isomorphic.
5. Let G be a group and $g \in G$. Define a map $i_{g}: G \rightarrow G$ by

$$
i_{g}(x)=g x g^{-1} .
$$

Prove that i_{g} defines an automorphism of G. Such an automorphism is called an inner automorphism. The set of all inner automorphisms is denoted by $\operatorname{Inn}(G)$.
6. Prove that $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$.
7. What is $\operatorname{Inn}(G)$ if G is abelian?
8. Find an example of an automorphism of some group G which is not an inner automorphism.
9. For a group G, define a map $i: G \rightarrow \operatorname{Aut}(G)$ by sending $g \in G$ to the automorphism i_{g} defined above. Show that i is a group homomorphism. Show that its kernel is the center of G (see homework 4). What is its image?

Exercise 4. In this exercise, we want to describe the homomorphisms $f:(\mathbf{Q},+) \rightarrow(\mathbf{Q},+)$, where \mathbf{Q} is the set of rational numbers.

1. Show that for all $x \in \mathbf{Q}$ and for all $n \in \mathbf{Z}$, we have $f(n x)=n f(x)$.
2. Deduce from this that for any rational number $\frac{p}{q}$, we have

$$
f\left(\frac{p}{q}\right)=\frac{f(p)}{q}
$$

3. Conclude that f is of the form $x \mapsto a x$ for some rational number a.
4. Check that any map of this form is indeed a homomorphism.
5. Deduce $\operatorname{Aut}(\mathbf{Q})$.
