Algebra homework 8 Permutations

All answers have to be justified. For every $n \geq 1$ we denote by \mathfrak{S}_{n} the n-th symmetric group.
Exercise 1. Consider the following permutations:
$\sigma_{1}=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 3 & 4 & 2 & 1 & 5 & 7\end{array}\right), \sigma_{2}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 7 & 6 & 1 & 8 & 4\end{array}\right), \sigma_{3}=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 3 & 6 & 7 & 1 & 5 & 2\end{array}\right)$.

1. Compute $\sigma_{1} \sigma_{3}$.
2. Recall that both σ_{1} and σ_{3} can be seen as elements of \mathfrak{S}_{8} by putting $\sigma_{1}(8)=\sigma_{3}(8)=8$. Compute the products $\sigma_{1} \sigma_{2}$ and $\sigma_{2} \sigma_{3}$ in \mathfrak{S}_{8}.
3. Decompose σ_{1}, σ_{2} and σ_{3} into products of disjoint cycles, and then write each of them as a product of transpositions.

Exercise 2. Write the following permutations as products of disjoint cycles:

1. $(1,2,7,5)(2,6,1)$
2. $(1,5,2)(2,3)(5,7)(1,2,3)$
3. $(1,3,4)^{100}$
4. $(1,3,5,6)^{-1}$

Exercise 3. Let a_{1}, \ldots, a_{k} be distinct elements of $\{1, \ldots, n\}$. Compute the inverse in \mathfrak{S}_{n} of the $\operatorname{cycle}\left(a_{1}, \ldots, a_{k}\right)$.

Exercise 4. Compute the sets

$$
E=\left\{\sigma \in \mathfrak{S}_{4}, \sigma(1)=3\right\}
$$

and

$$
F=\left\{\sigma \in \mathfrak{S}_{4}, \sigma(2)=2\right\}
$$

Are they subgroups of \mathfrak{S}_{4} ?
Exercise 5. Prove that if σ is a cycle of odd length, then σ^{2} is also a cycle. Show that this is not true for cycles of even length by giving a counterexample.

Exercise 6. Let $\sigma \in \mathfrak{S}_{n}$.

1. Show that σ can be written as a product of at most $n-1$ transpositions.
2. Show that if σ is not a cycle, then σ can be written as a product of at most $n-2$ transpositions.

Exercise 7. Let $\sigma=\sigma_{1} \ldots \sigma_{k} \in \mathfrak{S}_{n}$, where $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_{1}, \ldots, \sigma_{k}$.

Exercise 8. 1. Give a list of all possible orders of an element of \mathfrak{S}_{4}, then of \mathfrak{S}_{5}.
2. Show that an element of \mathfrak{S}_{7} can't have order 8,9 or 11 .
3. Give a list of all possible orders of an element of \mathfrak{S}_{7}.

