Algebra homework 8 Permutations

All answers have to be justified. For every $n \ge 1$ we denote by \mathfrak{S}_n the *n*-th symmetric group.

Exercise 1. Consider the following permutations:

- 1. Compute $\sigma_1 \sigma_3$.
- 2. Recall that both σ_1 and σ_3 can be seen as elements of \mathfrak{S}_8 by putting $\sigma_1(8) = \sigma_3(8) = 8$. Compute the products $\sigma_1 \sigma_2$ and $\sigma_2 \sigma_3$ in \mathfrak{S}_8 .
- 3. Decompose σ_1, σ_2 and σ_3 into products of disjoint cycles, and then write each of them as a product of transpositions.

Exercise 2. Write the following permutations as products of disjoint cycles:

- 1. (1, 2, 7, 5)(2, 6, 1)
- 2. (1,5,2)(2,3)(5,7)(1,2,3)
- 3. $(1, 3, 4)^{100}$
- 4. $(1, 3, 5, 6)^{-1}$

Exercise 3. Let a_1, \ldots, a_k be distinct elements of $\{1, \ldots, n\}$. Compute the inverse in \mathfrak{S}_n of the cycle (a_1, \ldots, a_k) .

Exercise 4. Compute the sets

$$E = \{ \sigma \in \mathfrak{S}_4, \ \sigma(1) = 3 \}$$
$$F = \{ \sigma \in \mathfrak{S}_4, \ \sigma(2) = 2 \}.$$

and

Are they subgroups of \mathfrak{S}_4 ?

Exercise 5. Prove that if σ is a cycle of odd length, then σ^2 is also a cycle. Show that this is not true for cycles of even length by giving a counterexample.

Exercise 6. Let $\sigma \in \mathfrak{S}_n$.

- 1. Show that σ can be written as a product of at most n-1 transpositions.
- 2. Show that if σ is not a cycle, then σ can be written as a product of at most n-2 transpositions.

Exercise 7. Let $\sigma = \sigma_1 \dots \sigma_k \in \mathfrak{S}_n$, where $\sigma_1, \dots, \sigma_k$ are disjoint cycles. Prove that the order of σ is the least common multiple of the lengths of the cycles $\sigma_1, \dots, \sigma_k$.

Exercise 8. 1. Give a list of all possible orders of an element of \mathfrak{S}_4 , then of \mathfrak{S}_5 .

- 2. Show that an element of \mathfrak{S}_7 can't have order 8, 9 or 11.
- 3. Give a list of all possible orders of an element of \mathfrak{S}_7 .