Algebra homework 9
 Permutations

All answers have to be justified. For every $n \geq 1$ we denote by \mathfrak{S}_{n} the n-th symmetric group.
Exercise 1. Compute the signs of the following permutations:

$$
\begin{gathered}
\sigma_{1}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 3 & 4 & 6 & 2 & 1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
4 & 5 & 1 & 3 & 8 & 6 & 2 & 7
\end{array}\right) \\
\sigma_{3}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 3 & 6 & 7 & 1 & 5 & 2
\end{array}\right), \quad \sigma_{4}=(1,3,4)(5,2), \quad \sigma_{5}=(1,2)(1,6)(2,3)(5,3) .
\end{gathered}
$$

Exercise 2. Let $\sigma \in \mathfrak{S}_{n}$. Prove that

1. $\operatorname{sgn}(\sigma)=\operatorname{sgn}\left(\sigma^{-1}\right)$.
2. for all $\alpha \in \mathfrak{S}_{n}, \operatorname{sgn}\left(\alpha \sigma \alpha^{-1}\right)=\operatorname{sgn}(\sigma)$.

Exercise 3. Let $n \geq 1$ and let e_{1}, \ldots, e_{n} be the usual basis vectors of \mathbf{R}^{n}. For all \mathfrak{S}_{n} we define the matrix $M_{\sigma} \in M_{n}(\mathbf{R})$ to be the matrix such that for all $i \in\{1, \ldots, n\}$ its coefficient at column i and row $\sigma(i)$ is 1 , all other coefficients being equal to zero. For example, for the transposition (12) in \mathfrak{S}_{2}, we have $M_{(12)}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

1. Compute M_{id} where id $\in \mathfrak{S}_{n}$ is the identity permutation.
2. Compute M_{σ} for all $\sigma \in \mathfrak{S}_{3}$.
3. Explain why for all $\sigma \in \mathfrak{S}_{n}$, there is exactly one coefficient equal to 1 in each row of M_{σ}, as well as in each column.
4. What is the image $M_{\sigma} e_{i}$ of the basis vector e_{i} by M_{σ} ?
5. Show that for all permutations $\sigma, \tau \in \mathfrak{S}_{n}$, we have $M_{\sigma \tau}=M_{\sigma} M_{\tau}$.
6. Show that for every $\sigma \in \mathfrak{S}_{n}, M_{\sigma}$ is an invertible matrix.
7. Show that the map $\phi: \mathfrak{S}_{n} \rightarrow\left(G L_{n}(\mathbf{R}), \cdot\right)$ defined by $\sigma \mapsto M_{\sigma}$ is an injective group homomorphism.

Exercise 4. Recall that the center of the group \mathfrak{S}_{n} is defined by

$$
Z\left(\mathfrak{S}_{n}\right)=\left\{\sigma \in \mathfrak{S}_{n} \mid \text { for all } \alpha \in \mathfrak{S}_{n}, \alpha \sigma=\sigma \alpha\right\}
$$

1. Show that id $\in Z\left(\mathfrak{S}_{n}\right)$.
2. Compute $Z\left(\mathfrak{S}_{n}\right)$ for $n=1,2,3$.
3. We now assume $n \geq 3$ and pick $\sigma \in \mathfrak{S}_{n}$ different from the identity.
(a) Show that there exist $i, j \in\{1, \ldots, n\}$ distinct such that $\sigma(i)=j$.
(b) Construct a transposition α such that $\alpha \sigma \alpha^{-1}(i) \neq j$.
(c) Conclude that $Z\left(\mathfrak{S}_{n}\right)=\{\mathrm{id}\}$.
