Midterm

October 31, 2017
Exercise 1. 1. Let $f: G \rightarrow H$ be a group homomorphism. Define $\operatorname{Ker} f$ and show that it is a subgroup of G.
Solution. See lectures.
2. Let A be the subset of $M_{2}(\mathbf{R})$ given by

$$
A=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a+d=0\right\}
$$

Is it a subgroup of $M_{2}(\mathbf{R})$?
Solution. Yes, it is a subgroup. This can be seen by checking all axioms separately, or by checking that the map $\phi: M_{2}(\mathbf{R}) \rightarrow \mathbf{R}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto a+d
$$

is a homomorphism and by noticing that $A=\operatorname{Ker} \phi$.
Exercise 2. 1. (a) Give the order of the class of 2 in the group $(\mathbf{Z} / 10 \mathbf{Z},+)$. Is it a generator?
Solution. Recall that the group law here is addition. Since $1 \cdot 2=2,2 \cdot 2=4,3 \cdot 2=6$, $4 \cdot 2=8$ and $5 \cdot 2 \equiv 0(\bmod 10)$, we see that 2 is of order 5 . In particular, it is not a generator of $\mathbf{Z} / 10 \mathbf{Z}$, since the latter is of order 10 .
(b) Show that the group $\mathbf{Z} / 10 \mathbf{Z}$ is cyclic and give the list of all its generators.

Solution. We have seen in lectures that $\mathbf{Z} / 10 \mathbf{Z}$ is cyclic, and that its generators are exactly the classes of elements coprime to 10 , that is $\{1,3,7,9\}$.
(c) Give an element of order 2 in $\mathbf{Z} / 10 \mathbf{Z}$.

Solution. The class of 5 is of order 2 , since $2 \cdot 5 \equiv 0(\bmod 10)$.
(d) Give a subgroup of order 5 of $\mathbf{Z} / 10 \mathbf{Z}$.

Solution. Since 2 is of order 5 as we have seen in question 1.(a), the subgroup $\{[0],[2],[4],[6],[8]\}$ it generates is of order 5 .
2. Let $\phi: \mathbf{Z} / 10 \mathbf{Z} \rightarrow \mathbf{Z} / 10 \mathbf{Z}$ be a group homomorphism.
(a) Can we have $\phi([0])=[3]$?

Solution. No, we have seen in lectures that the image of the identity element by a homomorphism should be the identity element, so we must have $\phi([0])=[0]$.
(b) If $\phi([2])=[4]$, what is $\phi([8])$?

Solution. Since -2 and 8 have the same class in $\mathbf{Z} / 10 \mathbf{Z}$ and ϕ is a homomorphism, we have $\phi([8])=\phi(-[2])=-\phi([2])=-[4]=[6]$.
(c) If $\phi([1])=[2]$, can ϕ be an isomorphism?

Solution. No, we have seen in lectures that if ϕ is an isomorphism, then the order of $\phi([1])$ should be equal to the order of [1], which is not the case here since [1] is of order 10 whereas [2] is of order 5.
(d) Show that ϕ is of the form $[n] \mapsto a[n]$ for some $a \in \mathbf{Z} / 10 \mathbf{Z}$.

Solution. For all $n \in\{0, \ldots, 9\}$, we have, since ϕ is a homomorphism,

$$
\phi([n])=\phi(\underbrace{[1]+\ldots+[1]}_{n \text { terms }})=\underbrace{\phi([1])+\ldots+\phi([1])}_{n \text { terms }}=\phi([1])[n] .
$$

Putting $a=\phi([1])$, we have the result.
(e) Check that any map of this type is indeed a homomorphism.

Solution. Let $f:[n] \mapsto a[n]$ be such a map. For all integers n, m we have

$$
f([n]+[m])=f([n+m])=a([n+m])=a([n]+[m])=a[n]+a[m]=f([n])+f([m]) .
$$

(f) For which values of a is the homomorphism $n \mapsto a n$ an isomorphism?

Solution. Note that the image of $\phi:[n] \mapsto[a][n]$ consists of the multiples $[0],[a],[2 a], \ldots,[9 a]$ of the class of a. Thus, ϕ is surjective if and only if all elements of $\mathbf{Z} / 10 \mathbf{Z}$ are multiples of the class of a. This will happen if and only if a is a generator of $\mathbf{Z} / 10 \mathbf{Z}$, so if $a \in\{[1],[3],[7],[9]\}$, as we have seen in question 1.(b). Conversely, if a is one of these classes, then a is invertible in $\mathbf{Z} / 10 \mathbf{Z}$, and therefore

$$
\operatorname{Ker} \phi=\{[n] \in \mathbf{Z} / 10 \mathbf{Z}, a[n]=0\}=\{[0]\},
$$

so that in this case ϕ is automatically injective. As a conclusion, $[n] \mapsto a[n]$ is an isomorphism exactly when a is a unit in $\mathbf{Z} / 10 \mathbf{Z}$, that is, exactly if $a \in\{[1],[3],[7],[9]\}$.
3. (a) What is the order of the group $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$? Give all its elements and compute their inverses. Solution. As mentioned earlier, we have $(\mathbf{Z} / 10 \mathbf{Z})^{\times}=\{[1],[3],[7],[9]\}$ as seen in lectures. It is of order 4. The classes [1] and [9] are their own inverses since [1] • [1] = [1] and $[9] \cdot[9]=[81]=[1]$. On the other hand, $[3]$ is the inverse of $[7]$ since $[3] \cdot[7]=[21]=[1]$.
(b) Describe the group $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$by giving its Cayley table.

Solution. Here is the Cayley table (we omit square brackets to simplify notation).

	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

(c) Is $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$cyclic? If yes, give a generator.

Solution. Yes, and $[3]$ is a generator, since $[3]^{2}=[9],[3]^{3}=[7]$ and $[3]^{4}=[1]$.
(d) Is there an element of order 3 in $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$?

Solution. We see that $[1]$ is of order $1,[3]$ and $[7]$ are of order 4 , and $[9]$ is of order 2 , so there is no element of order 3.
(e) Give an example of a proper subgroup of $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$.

Solution. The class [9] is of order 2, as we can see from the Cayley table. Therefore, the subgroup generated by [9] is

$$
\langle[9]\rangle=\{[1],[9]\}
$$

which is a proper subgroup of $(\mathbf{Z} / 10 \mathbf{Z})^{\times}$.
Exercise 3. Let $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be the map defined by

$$
(x, y) \mapsto(x+y, y)
$$

1. Show that f is a group homomorphism.

Solution. Recall that the group law is + . Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbf{R}^{2}$. We have

$$
\begin{aligned}
f(x, y)+f\left(x^{\prime}, y^{\prime}\right) & =(x+y, y)+\left(x^{\prime}+y^{\prime}, y^{\prime}\right)=\left(\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right), y+y^{\prime}\right) \\
& =f\left(x+x^{\prime}, y+y^{\prime}\right)=f\left((x, y)+\left(x^{\prime}, y^{\prime}\right)\right) .
\end{aligned}
$$

2. Determine its kernel and its image.

Solution. We have

$$
\begin{aligned}
\operatorname{Ker} f & =\left\{(x, y) \in \mathbf{R}^{2},(x+y, y)=(0,0)\right\} \\
& =\left\{(x, y) \in \mathbf{R}^{2}, x+y=0 \text { and } y=0\right\} \\
& =\{(0,0)\}
\end{aligned}
$$

The image of f is

$$
\begin{aligned}
\operatorname{Im} f & =\left\{(u, v) \in \mathbf{R}^{2}, \text { there exists }(x, y) \in \mathbf{R}^{2}, \text { such that }(x+y, y)=(u, v)\right\} \\
& =\left\{(u, v) \in \mathbf{R}^{2}, \text { there exists }(x, y) \in \mathbf{R}^{2}, \text { such that } x+y=u, y=v\right\}
\end{aligned}
$$

Note that $x+y=u$ and $y=v$ if and only if $x=u-v$ and $y=v$. Thus, for all $(u, v) \in \mathbf{R}^{2}$, $f(u-v, v)=(u, v)$, so that $(u, v) \in \operatorname{Im} f$. We may conclude that $\operatorname{Im} f=\mathbf{R}^{2}$.
3. Is f an isomorphism?

Solution. Yes, by the computation of kernel and image in the previous question.
Exercise 4. 1. Give a list of all groups of order at most 4 up to isomorphism.
Solution. We proved in lectures that up to isomorphism, the only groups of order at most 4 are the trivial group, $\mathbf{Z} / 2 \mathbf{Z}$ (order 2), $\mathbf{Z} / 3 \mathbf{Z}$ (order 3) and $\mathbf{Z} / 4 \mathbf{Z}$ and $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ (both of order 4).
2. Let G be a group of order 4 having at least two distinct elements of order 2. Determine which of the groups in the list from the previous question it is isomorphic to.
Solution. The group $\mathbf{Z} / 4 \mathbf{Z}$ has only one element of order 2 , namely the class of 2 . Indeed, its other non-trivial elements 1 and 3 are both of order 4. Therefore, G is necessarily isomorphic to $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$, and we can in fact conclude that all the non-trivial elements of G are of order 2.
3. Give a list of all the subgroups of this group.

Solution. Let G be a non-trivial subgroup of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. As we have noted in lectures, whenever it contains two of the non-trivial elements of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$, it also contains the third one, and is therefore equal to all of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. Therefore, if G is not $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$, then G contains exactly one non-trivial element of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. Conversely, for any non-trivial element a of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}, a$ is of order 2 , so $\{(0,0), a\}$ is a subgroup of $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$. This gives us the list of all the subgroups:

$$
\{(0,0)\},\{(0,0),(1,0)\},\{(0,0),(0,1)\},\{(0,0),(1,1)\}, \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}
$$

