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Exercise 1. 1. Let f : G → H be a group homomorphism. Define Ker f and show that it is a
subgroup of G.

Solution. See lectures.

2. Let A be the subset of M2(R) given by

A =

{(
a b
c d

)
, a+ d = 0

}
.

Is it a subgroup of M2(R)?

Solution. Yes, it is a subgroup. This can be seen by checking all axioms separately, or by
checking that the map φ :M2(R)→ R given by(

a b
c d

)
7→ a+ d

is a homomorphism and by noticing that A = Kerφ.

Exercise 2. 1. (a) Give the order of the class of 2 in the group (Z/10Z,+). Is it a generator?
Solution. Recall that the group law here is addition. Since 1 · 2 = 2, 2 · 2 = 4, 3 · 2 = 6,
4 · 2 = 8 and 5 · 2 ≡ 0 (mod 10), we see that 2 is of order 5. In particular, it is not a
generator of Z/10Z, since the latter is of order 10.

(b) Show that the group Z/10Z is cyclic and give the list of all its generators.
Solution. We have seen in lectures that Z/10Z is cyclic, and that its generators are exactly
the classes of elements coprime to 10, that is {1, 3, 7, 9}.

(c) Give an element of order 2 in Z/10Z.
Solution. The class of 5 is of order 2, since 2 · 5 ≡ 0 (mod 10).

(d) Give a subgroup of order 5 of Z/10Z.
Solution. Since 2 is of order 5 as we have seen in question 1.(a), the subgroup {[0], [2], [4], [6], [8]}
it generates is of order 5.

2. Let φ : Z/10Z→ Z/10Z be a group homomorphism.

(a) Can we have φ([0]) = [3]?
Solution. No, we have seen in lectures that the image of the identity element by a homo-
morphism should be the identity element, so we must have φ([0]) = [0].

(b) If φ([2]) = [4], what is φ([8])?
Solution. Since −2 and 8 have the same class in Z/10Z and φ is a homomorphism, we
have φ([8]) = φ(−[2]) = −φ([2]) = −[4] = [6].

(c) If φ([1]) = [2], can φ be an isomorphism?
Solution. No, we have seen in lectures that if φ is an isomorphism, then the order of
φ([1]) should be equal to the order of [1], which is not the case here since [1] is of order
10 whereas [2] is of order 5.

(d) Show that φ is of the form [n] 7→ a[n] for some a ∈ Z/10Z.
Solution. For all n ∈ {0, . . . , 9}, we have, since φ is a homomorphism,

φ([n]) = φ([1] + . . .+ [1]︸ ︷︷ ︸
n terms

) = φ([1]) + . . .+ φ([1])︸ ︷︷ ︸
n terms

= φ([1])[n].

Putting a = φ([1]), we have the result.
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(e) Check that any map of this type is indeed a homomorphism.
Solution. Let f : [n] 7→ a[n] be such a map. For all integers n,m we have

f([n] + [m]) = f([n+m]) = a([n+m]) = a([n] + [m]) = a[n] + a[m] = f([n]) + f([m]).

(f) For which values of a is the homomorphism n 7→ an an isomorphism?
Solution. Note that the image of φ : [n] 7→ [a][n] consists of the multiples [0], [a], [2a], . . . , [9a]
of the class of a. Thus, φ is surjective if and only if all elements of Z/10Z are multi-
ples of the class of a. This will happen if and only if a is a generator of Z/10Z, so if
a ∈ {[1], [3], [7], [9]}, as we have seen in question 1.(b). Conversely, if a is one of these
classes, then a is invertible in Z/10Z, and therefore

Kerφ = {[n] ∈ Z/10Z, a[n] = 0} = {[0]},

so that in this case φ is automatically injective. As a conclusion, [n] 7→ a[n] is an isomor-
phism exactly when a is a unit in Z/10Z, that is, exactly if a ∈ {[1], [3], [7], [9]}.

3. (a) What is the order of the group (Z/10Z)×? Give all its elements and compute their inverses.
Solution. As mentioned earlier, we have (Z/10Z)× = {[1], [3], [7], [9]} as seen in lectures.
It is of order 4. The classes [1] and [9] are their own inverses since [1] · [1] = [1] and
[9] · [9] = [81] = [1]. On the other hand, [3] is the inverse of [7] since [3] · [7] = [21] = [1].

(b) Describe the group (Z/10Z)× by giving its Cayley table.
Solution. Here is the Cayley table (we omit square brackets to simplify notation).

1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

(c) Is (Z/10Z)× cyclic? If yes, give a generator.
Solution. Yes, and [3] is a generator, since [3]2 = [9], [3]3 = [7] and [3]4 = [1].

(d) Is there an element of order 3 in (Z/10Z)×?
Solution. We see that [1] is of order 1, [3] and [7] are of order 4, and [9] is of order 2, so
there is no element of order 3.

(e) Give an example of a proper subgroup of (Z/10Z)×.
Solution. The class [9] is of order 2, as we can see from the Cayley table. Therefore, the
subgroup generated by [9] is

〈[9]〉 = {[1], [9]}

which is a proper subgroup of (Z/10Z)×.

Exercise 3. Let f : R2 → R2 be the map defined by

(x, y) 7→ (x+ y, y)

1. Show that f is a group homomorphism.

Solution. Recall that the group law is +. Let (x, y), (x′, y′) ∈ R2. We have

f(x, y) + f(x′, y′) = (x+ y, y) + (x′ + y′, y′) = ((x+ x′) + (y + y′), y + y′)

= f(x+ x′, y + y′) = f((x, y) + (x′, y′)).
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2. Determine its kernel and its image.

Solution. We have

Ker f = {(x, y) ∈ R2, (x+ y, y) = (0, 0)}
= {(x, y) ∈ R2, x+ y = 0 and y = 0}
= {(0, 0)}

The image of f is

Im f = {(u, v) ∈ R2, there exists (x, y) ∈ R2, such that (x+ y, y) = (u, v)}
= {(u, v) ∈ R2, there exists (x, y) ∈ R2, such that x+ y = u, y = v}

Note that x + y = u and y = v if and only if x = u − v and y = v. Thus, for all (u, v) ∈ R2,
f(u− v, v) = (u, v), so that (u, v) ∈ Im f . We may conclude that Im f = R2.

3. Is f an isomorphism?

Solution. Yes, by the computation of kernel and image in the previous question.

Exercise 4. 1. Give a list of all groups of order at most 4 up to isomorphism.

Solution. We proved in lectures that up to isomorphism, the only groups of order at most 4
are the trivial group, Z/2Z (order 2), Z/3Z (order 3) and Z/4Z and Z/2Z × Z/2Z (both of
order 4).

2. Let G be a group of order 4 having at least two distinct elements of order 2. Determine which
of the groups in the list from the previous question it is isomorphic to.

Solution. The group Z/4Z has only one element of order 2, namely the class of 2. Indeed, its
other non-trivial elements 1 and 3 are both of order 4. Therefore, G is necessarily isomorphic
to Z/2Z × Z/2Z, and we can in fact conclude that all the non-trivial elements of G are of
order 2.

3. Give a list of all the subgroups of this group.

Solution. Let G be a non-trivial subgroup of Z/2Z × Z/2Z. As we have noted in lectures,
whenever it contains two of the non-trivial elements of Z/2Z×Z/2Z, it also contains the third
one, and is therefore equal to all of Z/2Z × Z/2Z. Therefore, if G is not Z/2Z × Z/2Z, then
G contains exactly one non-trivial element of Z/2Z × Z/2Z. Conversely, for any non-trivial
element a of Z/2Z× Z/2Z, a is of order 2, so {(0, 0), a} is a subgroup of Z/2Z× Z/2Z. This
gives us the list of all the subgroups:

{(0, 0)}, {(0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 1)}, Z/2Z× Z/2Z.
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