Algebra practice problems

Exercise 1. Let G be a group and let H_{1}, H_{2} be normal subgroups of G. Show that $H_{1} \cap H_{2}$ is a normal subgroup of G.

Exercise 2. Let H be a subgroup of a group G. The centralizer of H in G is defined to be the set

$$
C_{H}(G)=\{x \in G, x h=h x \text { for all } h \in H\}
$$

1. Show that $C_{H}(G)$ is a subgroup of G.
2. Show that if H is normal, then $C_{H}(G)$ is normal.

Exercise 3. 1. Find a permutation $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2)(3,4) \sigma^{-1}=(5,6)(3,1)$.
2. Does there exist $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2,3) \sigma^{-1}=(2,3)(1,6,7)$?
3. Does there exist $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2,4) \sigma^{-1}=(2,5)(1,3)$?

Exercise 4. The orthogonal group $O_{n}(\mathbf{R})$ is the subset of $M_{n}(\mathbf{R})$ given by

$$
O_{n}(\mathbf{R})=\left\{M \in M_{n}(\mathbf{R}), M^{t} M=M M^{t}=I_{n}\right\}
$$

where M^{t} denotes the transpose of a matrix M. We recall that for any matrix M, M and M^{t} have the same determinant.

1. Show that $O_{n}(\mathbf{R})$ is a subgroup of $\left(G L_{n}(\mathbf{R}), \cdot\right)$.
2. We define the special orthogonal group $S O_{n}(\mathbf{R})$ to be the subset of $O_{n}(\mathbf{R})$ of matrices with determinant 1 :

$$
S O_{n}(\mathbf{R})=\left\{M \in O_{n}(\mathbf{R}), \operatorname{det}(M)=1 .\right\}
$$

Show that $S O_{n}(\mathbf{R})$ is a normal subgroup of $O_{n}(\mathbf{R})$.
3. Show that $S O_{n}(\mathbf{R})$ has index 2 in $O_{n}(\mathbf{R})$ and that $O_{n}(\mathbf{R}) / S O_{n}(\mathbf{R})$ is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z},+)$.
4. Check that for any real number θ, the matrix

$$
M_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

is an element of $S O_{2}(\mathbf{R})$.
5. Check that the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is an element of $O_{2}(\mathbf{R})$. Is it an element of $S O_{2}(\mathbf{R})$?

Exercise 5. let G be a group and let H be the commutator subgroup of G, that is, the set of all finite products of elements of the form $a b a^{-1} b^{-1}$ for $a, b \in G$.

1. Show that H is a normal subgroup of G.
2. Show that the quotient G / H is abelian.
3. More generally, for any normal subgroup N of G, show that G / N is abelian if and only if N contains H.

Exercise 6. Let σ be the element of \mathfrak{S}_{9} given by

$$
\sigma=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 4 & 7 & 9 & 6 & 1 & 3 & 5 & 2
\end{array}\right)
$$

1. Give a decomposition of σ into disjoint cycles.
2. Determine the sign of σ.
3. What is the order of σ in \mathfrak{S}_{9} ?

Exercise 7. In \mathfrak{S}_{4}, consider the subset

$$
H=\left\{\mathrm{id},\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right),\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)\right\}
$$

1. Compute the inverses of the elements of H in \mathfrak{S}_{4}.
2. Is H a subgroup of \mathfrak{S}_{4} ?

Exercise 8. Let $n \geq 1$ be an integer and let $H=\left\{\sigma \in \mathfrak{S}_{n}, \sigma(1)=1.\right\}$.

1. Show that H is a subgroup of \mathfrak{S}_{n}.
2. Write down all the elements of H when $n=1, n=2$ and $n=3$.
3. When $n \geq 3$, show that H is not a normal subgroup of \mathfrak{S}_{n}.

Exercise 9. Let G be a group. Recall that the center of G is the subgroup of G given by

$$
Z(G)=\{x \in G, x g=g x \text { for all } g \in G\} .
$$

1. Show that $Z(G)$ is a normal subgroup of G.
2. We assume that the quotient group $G / Z(G)$ is cyclic.
(a) Show that this implies the existence of some element $t \in G$ such that for all $a \in G$, the coset $a Z(G)$ is equal to $t^{n} Z(G)$ for some $n \in \mathbf{Z}$.
(b) Show that if $a Z(G)=t^{n} Z(G)$, then there exists $x \in Z(G)$ such that $a=t^{n} x$.
(c) Deduce from this that G is abelian.

Exercise 10. Let G be a group and let H be a subgroup of G. Recall that for all $g \in G, g H^{-1}$ is a subgroup of G. We define N to be the intersection of all these subgroups.

1. Show that it is a normal subgroup of G.
2. Show that if H is normal, then $H=N$.
3. Compute N when $G=\mathfrak{S}_{3}$ and $H=\{\operatorname{id},(12)\}$.
