Algebra practice problems

Exercise 1. Let G be a group and let H_1, H_2 be normal subgroups of G. Show that $H_1 \cap H_2$ is a normal subgroup of G.

Exercise 2. Let H be a subgroup of a group G. The *centralizer* of H in G is defined to be the set

$$C_H(G) = \{x \in G, xh = hx \text{ for all } h \in H\}.$$

- 1. Show that $C_H(G)$ is a subgroup of G.
- 2. Show that if H is normal, then $C_H(G)$ is normal.

Exercise 3. 1. Find a permutation $\sigma \in \mathfrak{S}_9$ such that $\sigma(1,2)(3,4)\sigma^{-1} = (5,6)(3,1)$.

- 2. Does there exist $\sigma \in \mathfrak{S}_9$ such that $\sigma(1,2,3)\sigma^{-1} = (2,3)(1,6,7)$?
- 3. Does there exist $\sigma \in \mathfrak{S}_9$ such that $\sigma(1,2,4)\sigma^{-1} = (2,5)(1,3)$?

Exercise 4. The orthogonal group $O_n(\mathbf{R})$ is the subset of $M_n(\mathbf{R})$ given by

$$O_n(\mathbf{R}) = \{ M \in M_n(\mathbf{R}), \ M^t M = M M^t = I_n \}$$

where M^t denotes the transpose of a matrix M. We recall that for any matrix M, M and M^t have the same determinant.

- 1. Show that $O_n(\mathbf{R})$ is a subgroup of $(GL_n(\mathbf{R}), \cdot)$.
- 2. We define the special orthogonal group $SO_n(\mathbf{R})$ to be the subset of $O_n(\mathbf{R})$ of matrices with determinant 1:

$$SO_n(\mathbf{R}) = \{ M \in O_n(\mathbf{R}), \det(M) = 1. \}$$

Show that $SO_n(\mathbf{R})$ is a normal subgroup of $O_n(\mathbf{R})$.

- 3. Show that $SO_n(\mathbf{R})$ has index 2 in $O_n(\mathbf{R})$ and that $O_n(\mathbf{R})/SO_n(\mathbf{R})$ is isomorphic to $(\mathbf{Z}/2\mathbf{Z}, +)$.
- 4. Check that for any real number θ , the matrix

$$M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

is an element of $SO_2(\mathbf{R})$.

5. Check that the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ is an element of $O_2(\mathbf{R})$. Is it an element of $SO_2(\mathbf{R})$?

Exercise 5. let G be a group and let H be the *commutator subgroup* of G, that is, the set of all finite products of elements of the form $aba^{-1}b^{-1}$ for $a, b \in G$.

- 1. Show that H is a normal subgroup of G.
- 2. Show that the quotient G/H is abelian.
- 3. More generally, for any normal subgroup N of G, show that G/N is abelian if and only if N contains H.

Exercise 6. Let σ be the element of \mathfrak{S}_9 given by

- 1. Give a decomposition of σ into disjoint cycles.
- 2. Determine the sign of σ .
- 3. What is the order of σ in \mathfrak{S}_9 ?

Exercise 7. In \mathfrak{S}_4 , consider the subset

$$H = \left\{ \text{id}, \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{array} \right), \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{array} \right) \right\}$$

- 1. Compute the inverses of the elements of H in \mathfrak{S}_4 .
- 2. Is H a subgroup of \mathfrak{S}_4 ?

Exercise 8. Let $n \ge 1$ be an integer and let $H = \{ \sigma \in \mathfrak{S}_n, \sigma(1) = 1. \}$.

- 1. Show that H is a subgroup of \mathfrak{S}_n .
- 2. Write down all the elements of H when n = 1, n = 2 and n = 3.
- 3. When $n \geq 3$, show that H is not a normal subgroup of \mathfrak{S}_n .

Exercise 9. Let G be a group. Recall that the *center* of G is the subgroup of G given by

 $Z(G) = \{ x \in G, xg = gx \text{ for all } g \in G \}.$

- 1. Show that Z(G) is a normal subgroup of G.
- 2. We assume that the quotient group G/Z(G) is cyclic.
 - (a) Show that this implies the existence of some element $t \in G$ such that for all $a \in G$, the coset aZ(G) is equal to $t^n Z(G)$ for some $n \in \mathbb{Z}$.
 - (b) Show that if $aZ(G) = t^n Z(G)$, then there exists $x \in Z(G)$ such that $a = t^n x$.
 - (c) Deduce from this that G is abelian.

Exercise 10. Let G be a group and let H be a subgroup of G. Recall that for all $g \in G$, gHg^{-1} is a subgroup of G. We define N to be the intersection of all these subgroups.

- 1. Show that it is a normal subgroup of G.
- 2. Show that if H is normal, then H = N.
- 3. Compute N when $G = \mathfrak{S}_3$ and $H = \{ id, (12) \}$.