Algebra practice problems Hints and solutions

Note: we do not give solutions to the questions where one needs to prove that something is a (normal) subgroup. The procedure is always the same, one should check the three axioms SG1, SG2, SG3 (closure, identity, inverses). To check that it is normal, use the definition.

Exercise 1. Let G be a group and let H_{1}, H_{2} be normal subgroups of G. Show that $H_{1} \cap H_{2}$ is a normal subgroup of G.

Exercise 2. Let H be a subgroup of a group G. The centralizer of H in G is defined to be the set

$$
C_{H}(G)=\{x \in G, x h=h x \text { for all } h \in H\} .
$$

1. Show that $C_{H}(G)$ is a subgroup of G.
2. Show that if H is normal, then $C_{H}(G)$ is normal.

Solution. Assume that H is normal. We need to prove that for every $x \in C) H(G)$ and for every $g \in G, g x g^{-1} \in C_{H}(G)$. For this, by definition of $C_{H}(G)$, we need to prove that for every $h \in H$,

$$
\begin{equation*}
g x g^{-1} h=h g x g^{-1} . \tag{1}
\end{equation*}
$$

Now, since h is normal, we have $g^{-1} h g \in H$, and therefore, since $x \in C_{H}(G)$, by definition of $C_{H}(G)$, we have that

$$
x\left(g^{-1} h g\right)=\left(g^{-1} h g\right) x
$$

Multiplying by g on the left and by g^{-1} on the right, we get equality (11).
Exercise 3. 1. Find a permutation $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2)(3,4) \sigma^{-1}=(5,6)(3,1)$.
Solution. We have

$$
\sigma(1,2)(3,4) \sigma^{-1}=\sigma(1,2) \sigma^{-1} \sigma(3,4) \sigma^{-1}
$$

so it suffices to find σ such that simultaneously,

$$
\sigma(1,2) \sigma^{-1}=(5,6)
$$

and

$$
\sigma(3,4) \sigma^{-1}=(3,1)
$$

By a formula seen in class, it suffices to find σ such that $\sigma(1)=2, \sigma(2)=6, \sigma(3)=3$ and $\sigma(4)=1$. Take

$$
\sigma=(4,1,5)(2,6)=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
5 & 6 & 3 & 1 & 4 & 2 & 7 & 8 & 9
\end{array}\right)
$$

2. Does there exist $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2,3) \sigma^{-1}=(2,3)(1,6,7)$?

Solution. Look at signs: the left-hand side is even, the right-hand side is odd, so this is impossible.
3. Does there exist $\sigma \in \mathfrak{S}_{9}$ such that $\sigma(1,2,4) \sigma^{-1}=(2,5)(1,3)$?

Solution. Here both sides are even, so the sign argument does not work. However, by a formula seen in class, we must have

$$
\sigma(1,2,4) \sigma^{-1}=(\sigma(1), \sigma(2), \sigma(3))
$$

that is, the left-hand side is a cycle of length 3 , whereas the right-hand side is not, so this is impossible.

Exercise 4. The orthogonal group $O_{n}(\mathbf{R})$ is the subset of $M_{n}(\mathbf{R})$ given by

$$
O_{n}(\mathbf{R})=\left\{M \in M_{n}(\mathbf{R}), M^{t} M=M M^{t}=I_{n}\right\}
$$

where M^{t} denotes the transpose of a matrix M. We recall that for any matrix M, M and M^{t} have the same determinant.

1. Show that $O_{n}(\mathbf{R})$ is a subgroup of $\left(G L_{n}(\mathbf{R}), \cdot\right)$.
2. We define the special orthogonal group $S O_{n}(\mathbf{R})$ to be the subset of $O_{n}(\mathbf{R})$ of matrices with determinant 1 :

$$
S O_{n}(\mathbf{R})=\left\{M \in O_{n}(\mathbf{R}), \operatorname{det}(M)=1 .\right\}
$$

Show that $S O_{n}(\mathbf{R})$ is a normal subgroup of $O_{n}(\mathbf{R})$.
3. Show that $S O_{n}(\mathbf{R})$ has index 2 in $O_{n}(\mathbf{R})$ and that $O_{n}(\mathbf{R}) / S O_{n}(\mathbf{R})$ is isomorphic to $(\mathbf{Z} / 2 \mathbf{Z},+)$.

Hint: Show that the determinant of an element of $O_{n}(\mathbf{R})$ is either 1 or -1 .
4. Check that for any real number θ, the matrix

$$
M_{\theta}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

is an element of $S O_{2}(\mathbf{R})$.
5. Check that the matrix $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ is an element of $O_{2}(\mathbf{R})$. Is it an element of $S O_{2}(\mathbf{R})$?

Exercise 5. Let G be a group and let H be the commutator subgroup of G, that is, the set of all finite products of elements of the form $a b a^{-1} b^{-1}$ for $a, b \in G$.

1. Show that H is a normal subgroup of G.

Solution. To check that it is a subgroup, check all the subgroup axioms. To show that it is normal, write for all $g \in G$

$$
g a b a^{-1} b^{-1} g^{-1}=g a g^{-1} g b g^{-1} g a^{-1} g^{-1} g b^{-1} g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)\left(g a g^{-1}\right)^{-1}\left(g b g^{-1}\right)^{-1} .
$$

2. Show that the quotient G / H is abelian.

Solution. Let $a H$ and $b H$ be two cosets. We want to show that

$$
(a H)(b H)=(b H)(a H)
$$

By definition, $(a H)(b H)=a b H$ and $(b H)(a H)=b a H$. Since H is normal, these left cosets are equal to On the other hand, since $a b(b a)^{-1}=a b a^{-1} b^{-1} \in H$, we have that $a b \in H b a=b a H$ (right cosets and left cosets are the same), so the cosets $a b H$ and $b a H$ are the same, whence the result.
3. More generally, for any normal subgroup N of G, show that G / N is abelian if and only if N contains H.

Solution. By the same method as above, if N contains H, then G / N is abelian. Conversely, if G / N is abelian, then this means that for all $a, b \in G,(a N)(b N)=(b N)(a N)$, that is, $a b N=b a N$. Since N is normal, this implies $N a b=N b a$ (right cosets are same as left cosets), so $a b(b a)^{-1} \in N$, i.e. $a b a^{-1} b^{-1} \in N$. Thus, N contains all of the elements of the form $a b a^{-1} b^{-1}$ for $a, b \in G$. By closure, it contains all the finite products of such elements, and therefore it contains H.

Exercise 6. Let σ be the element of \mathfrak{S}_{9} given by

$$
\sigma=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
8 & 4 & 7 & 9 & 6 & 1 & 3 & 5 & 2
\end{array}\right)
$$

1. Give a decomposition of σ into disjoint cycles.

Solution. We have $\sigma=(1,8,5,6)(2,4,9)(3,7)$.
2. Determine the sign of σ.

Solution. Using multiplicativity of the sign and the fact that a cycle of length k has sign $(-1)^{k-1}$, we see that is even.
3. What is the order of σ in \mathfrak{S}_{9} ?

Solution. Observe that $\sigma^{12}=$ id (to compute more quickly, use that disjoint cycles commute, and that a cycle of length k is of order k), so that the order of σ divides 12 . It is therefore equal to $1,2,3,4,6$ or 12 . It cannot be 1 because $\sigma \neq \mathrm{id}$. We compute

$$
\begin{gathered}
\sigma^{2}=(1,8,5,6)^{2}(2,4,9)^{2}(3,7)^{2}=(1,5)(8,6)(2,9,4) \neq \mathrm{id} \\
\sigma^{3}=(1,8,5,6)^{3}(2,4,9)^{3}(3,7)^{3}=(1,6,5,8)(3,7) \neq \mathrm{id} \\
\sigma^{4}=(1,8,5,6)^{4}(2,4,9)^{4}(3,7)^{4}=(2,4,9) \neq \mathrm{id} \\
\sigma^{6}=(1,8,5,6)^{6}(2,4,9)^{6}(3,7)^{6}=(1,8,5,6)^{2}=(1,5)(8,6) \neq \mathrm{id} .
\end{gathered}
$$

Therefore, the order of σ is 12 .
Exercise 7. In \mathfrak{S}_{4}, consider the subset

$$
H=\left\{\mathrm{id},\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right),\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 1 & 2 & 4
\end{array}\right),\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)\right\} .
$$

1. Compute the inverses of the elements of H in \mathfrak{S}_{4}.

Solution. You should find that $\mathrm{id}^{-1}=\mathrm{id}$, the first two non-trivial elements are inverse to each other, and the last element is its own inverse.
2. Is H a subgroup of \mathfrak{S}_{4} ?

Solution. No, it does not satisfy closure, looking e.g. at the product of the two last elements.
Exercise 8. Let $n \geq 1$ be an integer and let $H=\left\{\sigma \in \mathfrak{S}_{n}, \sigma(1)=1.\right\}$.

1. Show that H is a subgroup of \mathfrak{S}_{n}.
2. Write down all the elements of H when $n=1, n=2$ and $n=3$.
3. When $n \geq 3$, show that H is not a normal subgroup of \mathfrak{S}_{n}.

Solution. If $n \geq 3$, then H is not the trivial subgroup $\{\mathrm{id}\}$, and therefore it contains some $\sigma \neq \mathrm{id}$. Then there exists $i>1$ such that $\sigma(i) \neq i$. By injectivity of $\sigma, \sigma(i) \neq \sigma(1)=1$. Look at the permutation $\alpha=(1, i) \sigma(1, i)^{-1}$: we have

$$
\alpha(1)=(1, i) \sigma(i)=\sigma(i) \neq 1
$$

since $\sigma(i) \notin\{1, i\}$. Therefore, $\alpha \notin H$, and so H is not normal.
Exercise 9. Let G be a group. Recall that the center of G is the subgroup of G given by

$$
Z(G)=\{x \in G, x g=g x \text { for all } g \in G\}
$$

1. Show that $Z(G)$ is a normal subgroup of G.
2. We assume that the quotient group $G / Z(G)$ is cyclic.
(a) Show that this implies the existence of some element $t \in G$ such that for all $a \in G$, the coset $a Z(G)$ is equal to $t^{n} Z(G)$ for some $n \in \mathbf{Z}$.
Solution. Since $G / Z(G)$ is cyclic, it is generated by some coset $t Z(G)$ for some $t \in G$. This means that for all $a Z(G)$, there is $n \in \mathbf{Z}$ such that $a Z(G)=(t Z(G))^{n}=t^{n} Z(G)$, where the last equality comes from the definition of the group law in $G / Z(G)$.
(b) Show that if $a Z(G)=t^{n} Z(G)$, then there exists $x \in Z(G)$ such that $a=t^{n} x$. Solution. Two elements a and b define the same coset if and only if $b^{-1} a \in Z(G)$, so if and only if $a=b x$ for some $x \in Z(G)$. Apply this to $b=t^{n}$.
(c) Deduce from this that G is abelian.

Solution. Let $a, b \in G$. We want to prove that $a b=b a$. Using the previous question, we may write $a=t^{n} x$ and $b=t^{m} y$ for $m, n \in \mathbf{Z}$ and $x, y \in Z(G)$. Then we have

$$
\begin{aligned}
a b & =t^{n} x t^{m} y \\
& =t^{n} t^{m} x y \quad \text { because } x \in Z(G) \\
& =t^{n+m} x y \\
& =t^{m} t^{n} x y \\
& =t^{m} t^{n} y x \quad \text { because } x \in Z(G) \\
& =t^{m} y t^{n} x \quad \text { because } y \in Z(G) \\
& =b a
\end{aligned}
$$

Exercise 10. Let G be a group and let H be a subgroup of G. Recall that for all $g \in G, g H g^{-1}$ is a subgroup of G. We define N to be the intersection of all these subgroups.

1. Show that it is a normal subgroup of G.
2. Show that if H is normal, then $H=N$.

Solution. If H is normal, then for all $g \in G, g H^{-1}=H$, so the intersection of all of these subgroups is H.
3. Compute N when $G=\mathfrak{S}_{3}$ and $H=\{\mathrm{id},(12)\}$.

Solution. Compute e.g. (12) $H(12)^{-1}=H$ and (13) $H(13)^{-1}=\{$ id, (23) $\}$. Already the intersection of these two subgroups is trivial, so the total intersection will be trivial as well.

