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Algebra practice problems
Hints and solutions

Note: we do not give solutions to the questions where one needs to prove that something is a
(normal) subgroup. The procedure is always the same, one should check the three axioms SG1,
SG2, SG3 (closure, identity, inverses). To check that it is normal, use the definition.

Exercise 1. Let G be a group and let H1, H2 be normal subgroups of G. Show that H1 ∩H2 is a
normal subgroup of G.

Exercise 2. Let H be a subgroup of a group G. The centralizer of H in G is defined to be the set

CH(G) = {x ∈ G, xh = hx for all h ∈ H}.

1. Show that CH(G) is a subgroup of G.

2. Show that if H is normal, then CH(G) is normal.

Solution. Assume that H is normal. We need to prove that for every x ∈ C)H(G) and for
every g ∈ G, gxg−1 ∈ CH(G). For this, by definition of CH(G), we need to prove that for
every h ∈ H,

gxg−1h = hgxg−1. (1)

Now, since h is normal, we have g−1hg ∈ H, and therefore, since x ∈ CH(G), by definition
of CH(G), we have that

x(g−1hg) = (g−1hg)x.

Multiplying by g on the left and by g−1 on the right, we get equality (1).

Exercise 3. 1. Find a permutation σ ∈ S9 such that σ(1, 2)(3, 4)σ−1 = (5, 6)(3, 1).

Solution. We have
σ(1, 2)(3, 4)σ−1 = σ(1, 2)σ−1σ(3, 4)σ−1,

so it suffices to find σ such that simultaneously,

σ(1, 2)σ−1 = (5, 6)

and
σ(3, 4)σ−1 = (3, 1).

By a formula seen in class, it suffices to find σ such that σ(1) = 2, σ(2) = 6, σ(3) = 3 and
σ(4) = 1. Take

σ = (4, 1, 5)(2, 6) =

(
1 2 3 4 5 6 7 8 9
5 6 3 1 4 2 7 8 9

)
.

2. Does there exist σ ∈ S9 such that σ(1, 2, 3)σ−1 = (2, 3)(1, 6, 7) ?

Solution. Look at signs: the left-hand side is even, the right-hand side is odd, so this is
impossible.



3. Does there exist σ ∈ S9 such that σ(1, 2, 4)σ−1 = (2, 5)(1, 3)?
Solution. Here both sides are even, so the sign argument does not work. However, by a
formula seen in class, we must have

σ(1, 2, 4)σ−1 = (σ(1), σ(2), σ(3)),

that is, the left-hand side is a cycle of length 3, whereas the right-hand side is not, so this is
impossible.

Exercise 4. The orthogonal group On(R) is the subset of Mn(R) given by

On(R) = {M ∈Mn(R), M tM =MM t = In}

where M t denotes the transpose of a matrix M . We recall that for any matrix M , M and M t have
the same determinant.

1. Show that On(R) is a subgroup of (GLn(R), ·).

2. We define the special orthogonal group SOn(R) to be the subset of On(R) of matrices with
determinant 1:

SOn(R) = {M ∈ On(R), det(M) = 1.}
Show that SOn(R) is a normal subgroup of On(R).

3. Show that SOn(R) has index 2 inOn(R) and thatOn(R)/SOn(R) is isomorphic to (Z/2Z,+).
Hint : Show that the determinant of an element of On(R) is either 1 or −1.

4. Check that for any real number θ, the matrix

Mθ =

(
cos θ − sin θ
sin θ cos θ

)
is an element of SO2(R).

5. Check that the matrix
(

1 0
0 −1

)
is an element of O2(R). Is it an element of SO2(R) ?

Exercise 5. Let G be a group and let H be the commutator subgroup of G, that is, the set of all
finite products of elements of the form aba−1b−1 for a, b ∈ G.

1. Show that H is a normal subgroup of G.
Solution. To check that it is a subgroup, check all the subgroup axioms. To show that it is
normal, write for all g ∈ G

gaba−1b−1g−1 = gag−1gbg−1ga−1g−1gb−1g−1 = (gag−1)(gbg−1)(gag−1)−1(gbg−1)−1.

2. Show that the quotient G/H is abelian.
Solution. Let aH and bH be two cosets. We want to show that

(aH)(bH) = (bH)(aH).

By definition, (aH)(bH) = abH and (bH)(aH) = baH. SinceH is normal, these left cosets are
equal to On the other hand, since ab(ba)−1 = aba−1b−1 ∈ H, we have that ab ∈ Hba = baH
(right cosets and left cosets are the same), so the cosets abH and baH are the same, whence
the result.



3. More generally, for any normal subgroup N of G, show that G/N is abelian if and only if N
contains H.

Solution. By the same method as above, if N contains H, then G/N is abelian. Conversely,
if G/N is abelian, then this means that for all a, b ∈ G, (aN)(bN) = (bN)(aN), that is,
abN = baN . Since N is normal, this implies Nab = Nba (right cosets are same as left
cosets), so ab(ba)−1 ∈ N , i.e. aba−1b−1 ∈ N . Thus, N contains all of the elements of the
form aba−1b−1 for a, b ∈ G. By closure, it contains all the finite products of such elements,
and therefore it contains H.

Exercise 6. Let σ be the element of S9 given by

σ =

(
1 2 3 4 5 6 7 8 9
8 4 7 9 6 1 3 5 2

)
.

1. Give a decomposition of σ into disjoint cycles.

Solution. We have σ = (1, 8, 5, 6)(2, 4, 9)(3, 7).

2. Determine the sign of σ.

Solution. Using multiplicativity of the sign and the fact that a cycle of length k has sign
(−1)k−1, we see that is even.

3. What is the order of σ in S9?

Solution. Observe that σ12 = id (to compute more quickly, use that disjoint cycles commute,
and that a cycle of length k is of order k), so that the order of σ divides 12. It is therefore
equal to 1, 2, 3, 4, 6 or 12. It cannot be 1 because σ 6= id. We compute

σ2 = (1, 8, 5, 6)2(2, 4, 9)2(3, 7)2 = (1, 5)(8, 6)(2, 9, 4) 6= id

σ3 = (1, 8, 5, 6)3(2, 4, 9)3(3, 7)3 = (1, 6, 5, 8)(3, 7) 6= id.

σ4 = (1, 8, 5, 6)4(2, 4, 9)4(3, 7)4 = (2, 4, 9) 6= id.

σ6 = (1, 8, 5, 6)6(2, 4, 9)6(3, 7)6 = (1, 8, 5, 6)2 = (1, 5)(8, 6) 6= id.

Therefore, the order of σ is 12.

Exercise 7. In S4, consider the subset

H =

{
id,

(
1 2 3 4
2 3 1 4

)
,

(
1 2 3 4
3 1 2 4

)
,

(
1 2 3 4
1 4 3 2

)}
.

1. Compute the inverses of the elements of H in S4.

Solution. You should find that id−1 = id, the first two non-trivial elements are inverse to
each other, and the last element is its own inverse.

2. Is H a subgroup of S4?

Solution. No, it does not satisfy closure, looking e.g. at the product of the two last elements.

Exercise 8. Let n ≥ 1 be an integer and let H = {σ ∈ Sn, σ(1) = 1.}.

1. Show that H is a subgroup of Sn.



2. Write down all the elements of H when n = 1, n = 2 and n = 3.

3. When n ≥ 3, show that H is not a normal subgroup of Sn.
Solution. If n ≥ 3, then H is not the trivial subgroup {id}, and therefore it contains some
σ 6= id. Then there exists i > 1 such that σ(i) 6= i. By injectivity of σ, σ(i) 6= σ(1) = 1. Look
at the permutation α = (1, i)σ(1, i)−1: we have

α(1) = (1, i)σ(i) = σ(i) 6= 1,

since σ(i) 6∈ {1, i}. Therefore, α 6∈ H, and so H is not normal.

Exercise 9. Let G be a group. Recall that the center of G is the subgroup of G given by

Z(G) = {x ∈ G, xg = gx for all g ∈ G}.
1. Show that Z(G) is a normal subgroup of G.

2. We assume that the quotient group G/Z(G) is cyclic.

(a) Show that this implies the existence of some element t ∈ G such that for all a ∈ G, the
coset aZ(G) is equal to tnZ(G) for some n ∈ Z.
Solution. Since G/Z(G) is cyclic, it is generated by some coset tZ(G) for some t ∈ G.
This means that for all aZ(G), there is n ∈ Z such that aZ(G) = (tZ(G))n = tnZ(G),
where the last equality comes from the definition of the group law in G/Z(G).

(b) Show that if aZ(G) = tnZ(G), then there exists x ∈ Z(G) such that a = tnx. Solution.
Two elements a and b define the same coset if and only if b−1a ∈ Z(G), so if and only
if a = bx for some x ∈ Z(G). Apply this to b = tn.

(c) Deduce from this that G is abelian.
Solution. Let a, b ∈ G. We want to prove that ab = ba. Using the previous question,
we may write a = tnx and b = tmy for m,n ∈ Z and x, y ∈ Z(G). Then we have

ab = tnxtmy

= tntmxy because x ∈ Z(G)
= tn+mxy

= tmtnxy

= tmtnyx because x ∈ Z(G)
= tmytnx because y ∈ Z(G)
= ba

Exercise 10. Let G be a group and let H be a subgroup of G. Recall that for all g ∈ G, gHg−1

is a subgroup of G. We define N to be the intersection of all these subgroups.

1. Show that it is a normal subgroup of G.

2. Show that if H is normal, then H = N .
Solution. If H is normal, then for all g ∈ G, gHg−1 = H, so the intersection of all of these
subgroups is H.

3. Compute N when G = S3 and H = {id, (12)}.
Solution. Compute e.g. (12)H(12)−1 = H and (13)H(13)−1 = {id, (23)}. Already the
intersection of these two subgroups is trivial, so the total intersection will be trivial as well.


