Section 005, T.A. L. Guigo
Question 1.(4 points.) Give the definition of a group.
A group is a set G together with a law of composition \star, which satisfies the following properties:

1. The law \star is associative: $\forall x, y, z \in G,(x \star y) \star z=x \star(y \star z)$.
2. There exists an identity element for $\star: \exists e \in G, \forall x \in G, x \star e=e \star x=x$.
3. Each element has an inverse in $G: \forall x \in G, \exists y \in G, x \star y=y \star x=e$.

Question 2.(4 points.) Let $E=[0,1]$ and let us define the following law on E :

$$
\forall x, y \in E, x \star y=x+y-x y
$$

Show that \star is a law of composition. Is it associative? Commutative? Has it got an identity element?
Don't forget the first part of the question! You must check that $\star:[0,1] \times[0,1] \longrightarrow[0,1]$ is a law of composition.
We can notice that for $x, y \in[0,1], x \star y=1-(1-x) \times(1-y)$.
Since $x, y \in[0,1],(1-x),(1-y) \in[0,1]$.
Then $(1-x) \times(1-y) \in[0,1]$.
This implies that $x \star y \in[0,1]$ since $x \star y=1-(1-x) \times(1-y)$.
Therefore \star is well defined, and it is a law of composition on E.
It is associative, since for $x, y, z \in[0,1]$:

$$
\begin{aligned}
x \star(y \star z) & =x+y \star z-x(y \star z) \\
& =x+(y+z-y z)-x(y+z-y z) \\
& =x+y+z-y z-x y-x z+x w z
\end{aligned}
$$

And on the other hand:

$$
\begin{aligned}
(x \star y) \star z & =x \star y+z-(x \star y) z \\
& =(x+y-x y)+z-(x+y-x y) z \\
& =x+y+z-y z-x y-x z+x y z
\end{aligned}
$$

So $x \star(y \star z)=(x \star y) \star z$.
\star is commutative since for $x, y \in[0,1]: x \star y=x+y-x y=y+x-y x=y \star x$.
0 is an identity element for \star since for all $x \in[0,1]: x \star 0=x+0-x \times 0=x$. And you can prove $0 \star x=x$ using the same calculation, or just by mentioning the commutativity of \star.

Problem 1.(6 points.) Is B a subgroup of group A in these examples? Justify.

1. $A=\left(G L_{2}(\mathbf{R}), \cdot\right)$ and $B=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), a, b \in \mathbf{R}, a \neq 0\right\}$.
B is a subset of A since for $a, b \in \mathbf{R}, a \neq 0, \operatorname{det}\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)=a^{2}+b^{2} \neq 0$. So each matrix in B has an inverse.
However it is not stable by the matrix product since for $a, b, c, d \in \mathbf{R}, a, c \neq 0$:

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) \times\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
a c-b d & a d+b c \\
-(a d+b c) & a c-b d
\end{array}\right)
$$

Nothing guarantees that $a c-b d \neq 0$ (a counter-example is $a=b=c=d=1$).
Therefore, B is not a subgroup of A.
2. $A=\left(G L_{2}(\mathbf{R}), \cdot\right)$ and $B=\left\{\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right), a \in \mathbf{R}\right\}$.

1. B is a subset of A since for any $a \in \mathbf{R}, \operatorname{det}\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)=1 \neq 0$.
2. The identity is in B, for a parameter a equal to 0 .
3. B is stable by matrix product, since for any $a, b \in \mathbf{R}$:

$$
\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right) \times\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
a+b & 0
\end{array}\right) \in B
$$

4. B is stable by inversion, since for $a \in \mathbf{R}$:

$$
\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-a & 0
\end{array}\right) \in B
$$

Therefore, B is a subgroup of A.
3. $A=\left(\mathbf{Q}^{*}, \times\right)$ and $B=\left\{2^{n}, n \in \mathbb{Z}\right\}$.

1. B is a subset of A since for any $n \in \mathbb{Z}, 2^{n}=\frac{2^{n}}{1} \in \mathbf{Q}$.
2. The identity is in B, since $1=2^{0} \in B$.
3. B is stable by multiplication, since for any $m, n \in \mathbb{Z}$:

$$
2^{n} \times 2^{m}=2^{m+n} \in B
$$

4. B is stable by inversion, since for $n \in \mathbb{Z}$:

$$
\left(2^{n}\right)^{-1}=2^{-n} \in B
$$

Problem 2.(6 points.) Below is a partially completed Cayley table of a group. Fill in the missing parts of the table.
Here is the initial table:

$*$	a	b	c	d
a	b		d	
b	a			
c			b	
d				b

$b * a=a$ tells us that b is the identity element. Therefore:

$*$	a	b	c	d
a	b	a	d	
b	a	b	c	d
c		c	b	
d		d		b

Then, let us have a look to $a d$:

1. It can't be b, because in that case $a a=a d$ and that would imply $a=d$.
2. It can't be d, because in that case $a c=a d$ and that would imply $c=d$.
3. It can't be a, because in that case $a b=a d$ and that would imply $b=d$.

Therefore, $a d=c$.

$*$	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c		c	b	
d		d		b

The same reasoning applies to fill each box of the table.

$*$	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c		c	b	a
d		d		b

Then:

$*$	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	b	a
d		d		b

And finally:

$*$	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	b	a
d	c	d	a	b

