Solutions - Quiz 2

SECTION 005, T.A. L. GUIGO

Question 1.(4 points.) Give the definition of a group.

A group is a set G together with a law of composition \star , which satisfies the following properties:

- 1. The law \star is associative: $\forall x, y, z \in G, (x \star y) \star z = x \star (y \star z).$
- 2. There exists an identity element for \star : $\exists e \in G, \forall x \in G, x \star e = e \star x = x$.
- 3. Each element has an inverse in $G: \forall x \in G, \exists y \in G, x \star y = y \star x = e$.

Question 2.(4 points.) Let E = [0, 1] and let us define the following law on E:

$$\forall x, y \in E, \ x \star y = x + y - xy$$

Show that \star is a law of composition. Is it associative? Commutative? Has it got an identity element?

Don't forget the first part of the question! You must check that $\star : [0,1] \times [0,1] \longrightarrow [0,1]$ is a law of composition. We can notice that for $x, y \in [0,1], x \star y = 1 - (1-x) \times (1-y)$. Since $x, y \in [0,1], (1-x), (1-y) \in [0,1]$. Then $(1-x) \times (1-y) \in [0,1]$. This implies that $x \star y \in [0,1]$ since $x \star y = 1 - (1-x) \times (1-y)$. Therefore \star is well defined, and it is a law of composition on E.

It is associative, since for $x, y, z \in [0, 1]$:

$$x \star (y \star z) = x + y \star z - x(y \star z)$$
$$= x + (y + z - yz) - x(y + z - yz)$$
$$= x + y + z - yz - xy - xz + xwz$$

And on the other hand:

$$(x \star y) \star z = x \star y + z - (x \star y)z$$
$$= (x + y - xy) + z - (x + y - xy)z$$
$$= x + y + z - yz - xy - xz + xyz$$

So $x \star (y \star z) = (x \star y) \star z$.

* is commutative since for $x, y \in [0, 1]$: $x \star y = x + y - xy = y + x - yx = y \star x$.

0 is an identity element for \star since for all $x \in [0, 1]$: $x \star 0 = x + 0 - x \times 0 = x$. And you can prove $0 \star x = x$ using the same calculation, or just by mentioning the commutativity of \star .

Problem 1.(6 points.) Is B a subgroup of group A in these examples? Justify.

1.
$$A = (GL_2(\mathbf{R}), \cdot)$$
 and $B = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbf{R}, a \neq 0 \right\}.$

B is a subset of *A* since for $a, b \in \mathbf{R}$, $a \neq 0$, det $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = a^2 + b^2 \neq 0$. So each matrix in *B* has an inverse.

However it is not stable by the matrix product since for $a, b, c, d \in \mathbf{R}$, $a, c \neq 0$:

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \times \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac - bd \end{pmatrix}$$

Nothing guarantees that $ac - bd \neq 0$ (a counter-example is a = b = c = d = 1). Therefore, B is not a subgroup of A.

2.
$$A = (GL_2(\mathbf{R}), \cdot)$$
 and $B = \left\{ \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, a \in \mathbf{R} \right\}$

- 1. *B* is a subset of *A* since for any $a \in \mathbf{R}$, det $\begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} = 1 \neq 0$.
- 2. The identity is in B, for a parameter a equal to 0.
- 3. *B* is stable by matrix product, since for any $a, b \in \mathbf{R}$:

$$\left(\begin{array}{cc}1&0\\a&1\end{array}\right)\times\left(\begin{array}{cc}1&0\\b&1\end{array}\right)=\left(\begin{array}{cc}1&0\\a+b&0\end{array}\right)\in B$$

4. *B* is stable by inversion, since for $a \in \mathbf{R}$:

$$\left(\begin{array}{cc} 1 & 0\\ a & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0\\ -a & 0 \end{array}\right) \in B$$

Therefore, B is a subgroup of A.

- 3. $A = (\mathbf{Q}^*, \times)$ and $B = \{2^n, n \in \mathbb{Z}\}.$
 - 1. *B* is a subset of *A* since for any $n \in \mathbb{Z}$, $2^n = \frac{2^n}{1} \in \mathbb{Q}$.
 - 2. The identity is in B, since $1 = 2^0 \in B$.
 - 3. B is stable by multiplication, since for any $m, n \in \mathbb{Z}$:

$$2^n \times 2^m = 2^{m+n} \in B$$

4. *B* is stable by inversion, since for $n \in \mathbb{Z}$:

$$(2^n)^{-1} = 2^{-n} \in B$$

Problem 2.(6 points.) Below is a partially completed Cayley table of a **group**. Fill in the missing parts of the table.

Here is the initial table:

*	a	b	С	d
a	b		d	
b	a			
c			b	
d				b

b * a = a tells us that b is the identity element. Therefore:

*	a	b	c	d
a	b	a	d	
b	a	b	c	d
C		c	b	
d		d		b

Then, let us have a look to ad:

- 1. It can't be b, because in that case aa = ad and that would imply a = d.
- 2. It can't be d, because in that case ac = ad and that would imply c = d.

3. It can't be a, because in that case ab = ad and that would imply b = d. Therefore, ad = c.

*	$\ a$	b	c	d
a	b	a	d	c
b	a	b	c	d
c		c	b	
d		d		b

The same reasoning applies to fill each box of the table.

*	a	b	c	d
a	b	a	d	c
b	a	b	c	d
С		c	b	a
d		d		b

Then:

*	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	b	a
d		d		b

*	a	b	c	d
a	b	a	d	c
b	a	b	c	d
c	d	c	b	a
d	c	d	a	b

And finally: