Quiz 4

SECTION 005, M. BILU

NAME / NETID:

Question 1.(4 points.) List the elements of \mathfrak{A}_4 , the alternating group on four elements.

Question 2.(6 points.) Let σ_1 and σ_2 be the following permutations.

$\sigma_1 =$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	2 15		3	4 14	$\frac{5}{3}$	6 13	7 4	8 12	$9 \\ 5$	10 11	11 6	12 10	13 7	14 9	$\begin{pmatrix} 15\\8 \end{pmatrix}$,
$\sigma_2 =$	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\frac{2}{4}$	$\frac{3}{6}$	4 8	5 10	(1	$\frac{6}{2}$	7 14	8 15	9 13	10 11	$\frac{11}{9}$	$\frac{12}{7}$	$\frac{13}{5}$	$\frac{14}{3}$	$\begin{pmatrix} 15\\1 \end{pmatrix}$.

- 1. Preliminary questions:
 - (a) Decompose each permutation as a product of disjoint cycles.
 - (b) Give the order of each permutation.
 - (c) Give the sign of each permutation.

2. Compute the sign of

 $\sigma_1 \circ \sigma_2 \circ \sigma_1^{-4} \circ \sigma_2^3 \circ \sigma_1 \circ \sigma_2 \circ \sigma_1 \circ \sigma_2 \circ \sigma_1^{-1} \circ \sigma_2^{-6}.$

Question 3.(6 points.) Prove that \mathfrak{S}_n is generated by transpositions of the form (1, i) with $i \in \{2, \ldots, n\}$ (remember that \mathfrak{S}_n is generated by transpositions).

Question 4.(4 points.) Let $\sigma = (1, 3, 5, 6)$, $\tau = (2, 4, 7, 3)$ be two cycles of length 4 in \mathfrak{S}_7 . Show that there exists a permutation α such that $\alpha \sigma \alpha^{-1} = \tau$.