Section 005, M. Bilu Name / NetiD:

Question 1.(4 points.) List the elements of \mathfrak{A}_{4}, the alternating group on four elements.

Question 2.(6 points.) Let σ_{1} and σ_{2} be the following permutations.

$$
\begin{aligned}
& \sigma_{1}=\left(\begin{array}{ccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
1 & 15 & 2 & 14 & 3 & 13 & 4 & 12 & 5 & 11 & 6 & 10 & 7 & 9 & 8
\end{array}\right) \\
& \sigma_{2}=\left(\begin{array}{cccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
2 & 4 & 6 & 8 & 10 & 12 & 14 & 15 & 13 & 11 & 9 & 7 & 5 & 3 \\
1
\end{array}\right) .
\end{aligned}
$$

1. Preliminary questions:
(a) Decompose each permutation as a product of disjoint cycles.
(b) Give the order of each permutation.
(c) Give the sign of each permutation.
2. Compute the sign of

$$
\sigma_{1} \circ \sigma_{2} \circ \sigma_{1}^{-4} \circ \sigma_{2}^{3} \circ \sigma_{1} \circ \sigma_{2} \circ \sigma_{1} \circ \sigma_{2} \circ \sigma_{1}^{-1} \circ \sigma_{2}^{-6}
$$

Question 3. (6 points.) Prove that \mathfrak{S}_{n} is generated by transpositions of the form $(1, i)$ with $i \in\{2, \ldots, n\}$ (remember that \mathfrak{S}_{n} is generated by transpositions).

Question 4.(4 points.) Let $\sigma=(1,3,5,6), \tau=(2,4,7,3)$ be two cycles of length 4 in \mathfrak{S}_{7}. Show that there exists a permutation α such that $\alpha \sigma \alpha^{-1}=\tau$.

