Section 005, M. Bilu
Question 1.(4 points.) Give a proof of the Gauss lemma, stated below:
Let $a, b, c$ be integers. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.
From Bézout's theorem, there exist some integers $u$ and $v$ such that $a u+b v=1$.
Multiplying this relation by $c$, we get $a c u+b c v=c$.
Because $a \mid b c$, there exists $q$ an integer such that $b c=a q$.
Substituting in the first relation, we get $a(c u+q v)=c$.
Because $c u+q v \in \mathbb{Z}, a \mid c$.

Question 2. (4 points.) Give the definition of an equivalence relation on a set $A$.
An binary relation $\mathcal{R}$ on the set $A$ is a subset of $A \times A$.
For $x, y \in A$, we write $x \mathcal{R} y$ if the couple $(x, y)$ (in this order!) belongs to $\mathcal{R}$.
We say that $\mathcal{R}$ is an equivalence relation if:

1. $\mathcal{R}$ is reflexive: for $x \in A, x \mathcal{R} x$.
2. $\mathcal{R}$ is symmetric: for $x, y \in A, x \mathcal{R} y \Rightarrow y \mathcal{R} x$.
3. $\mathcal{R}$ is transitive: for $x, y, z \in A, x \mathcal{R} y \wedge y \mathcal{R} z \Rightarrow x \mathcal{R} z$.

Problem 1.(6 points.) These questions are independent.

1. Find the inverse of 49 modulo 53 .

We can use the Euclidean algorithm to get an inverse of 49 modulo 53, that is an integer $n$ such that $49 n \equiv 1(\bmod 53)$, that is an integer $n$ such that there exists an integer $q$ such that $49 n-53 q=1$. We obtain:

$$
\begin{aligned}
53 & =49 \times 1+4 \\
49 & =4 \times 12+1 \\
4 & =4 \times 1+0
\end{aligned}
$$

Therefore $\operatorname{gcd}(49,53)=1$ (that was assumed by the question, otherwise $n$ wouldn't exist). And if you compute the reversed algorithm, you reach the following relation (if necessary, after simplification):

$$
49 \times 13-53 \times 12=1
$$

Therefore, the inverse of 49 modulo 53 is 13 .
2. Give the list of all the units of $\mathbb{Z} / 15 \mathbb{Z}$.

You have seen in class that it is exactly the set of classes of integers relatively prime to 15 . You should obtain:

$$
(\mathbb{Z} / 15 \mathbb{Z})^{\times}=\{1,2,4,7,8,11,13,14\}
$$

Problem 2. ( 6 points.) For any integer $n$, show that $\operatorname{gcd}(2 n+4,3 n+3)$ can only be $1,2,3$ or 6 .
It is sufficient to find a Bézout relation whose divisors of the right-hand side are $1,2,3$ and 6 .
You can observe that: $3 \times(2 n+3)-2 \times(3 n+3)=6$.
Therefore, $\operatorname{gcd}(2 n+4,3 n+3) \mid 6$ (that comes from the equality of sets: $a \mathbb{Z}+b \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z})$. As a divisor of $6, \operatorname{gcd}(a, b) \in\{1,2,3,6\}$.

Bonus. For non-zero integers $x, y, \operatorname{lcm}(x, y)$ is defined as the smallest positive common multiple of $x$ and $y$.
Find all integers $x, y$ such that: $\operatorname{gcd}(x, y)+\operatorname{lcm}(x, y)=x+y$.
Note that, $\operatorname{gcd}(x, y)$ and $\operatorname{lcm}(x, y)$ being positive by definition, we need to have $x+y$ positive, so at least one of the integers $x, y$ is positive. Up to exchanging $x$ and $y$, we may assume $x \leq y$ (so that in particular $y$ is positive). Since $\operatorname{lcm}(x, y)$ is in particular a multiple of $y$, there is an integer $k \geq 1$ such that $\operatorname{lcm}(x, y)=k y$. Then we have

$$
\operatorname{gcd}(x, y)+k y \leq 2 y
$$

so that $0<\operatorname{gcd}(x, y) \leq(2-k) y$. In particular, $y$ being positive, we have $2-k>0$, that is, $k<2$, so $k=1$. We therefore have $y=\operatorname{lcm}(x, y)$, that is, $y$ itself is a common multiple of $x$ and $y$, so $x$ must divide $y$. From the equation, we moreover get that $x=\operatorname{gcd}(x, y)$, that is, $x$ is positive. Recalling that we assumed $x \leq y$ up to exchanging $x$ and $y$, the solutions are pairs of positive integers $(x, y)$ such that $x \mid y$ or $y \mid x$.

