Section 005, M. Bilu NAME:

Question 1.(4 points.) Give a proof of the Gauss lemma, stated below:
Let a, b, c be integers. If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.

Question 2.(4 points.) Give the definition of an equivalence relation on a set A.

Problem 1.(6 points.) These questions are independent.

1. Find the inverse of 49 modulo 53 .
2. Give the list of all the units of $\mathbb{Z} / 15 \mathbb{Z}$.

Problem 2.(6 points.) For any integer n, show that $\operatorname{gcd}(2 n+4,3 n+3)$ can only be $1,2,3$ or 6 .

Bonus. For non-zero integers $x, y, \operatorname{lcm}(x, y)$ is defined as the smallest positive common multiple of x and y.
Find all integers x, y such that: $\operatorname{gcd}(x, y)+\operatorname{lcm}(x, y)=x+y$.
(You can use the back of this sheet for this question)

