Section 005, M. Bilu
Question 1.(4 points.) Give the definition of a group.

Question 2.(4 points.) Let $E=[0,1]$ and let us define the following law on E :

$$
\forall x, y \in E, x \star y=x+y-x y
$$

Show that \star is a law of composition. Is it associative? Commutative? Has it got an identity element?

Problem 1.(6 points.) Is B a subgroup of group A in these examples? Justify.

1. $A=\left(G L_{2}(\mathbf{R}), \cdot\right)$ and $B=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right), a, b \in \mathbf{R}, a \neq 0\right\}$.
2. $A=\left(G L_{2}(\mathbf{R}), \cdot\right)$ and $B=\left\{\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right), a \in \mathbf{R}\right\}$.
3. $A=\left(\mathbf{Q}^{*}, \times\right)$ and $B=\left\{2^{n}, n \in \mathbf{Z}\right\}$.

Problem 2.(6 points.) Below is a partially completed Cayley table of a group. Fill in the missing parts of the table.

$*$	a	b	c	d
a	b		d	
b	a			
c			b	
d				b

