Quiz 2

Section 005, M. Bilu

NAME / NETID:

Question 1.(4 points.) Give the definition of a group.

Question 2.(4 points.) Let E = [0, 1] and let us define the following law on E:

 $\forall x, y \in E, \ x \star y = x + y - xy$

Show that \star is a law of composition. Is it associative? Commutative? Has it got an identity element?

Problem 1.(6 points.) Is B a subgroup of group A in these examples? Justify.

1.
$$A = (GL_2(\mathbf{R}), \cdot)$$
 and $B = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, a, b \in \mathbf{R}, a \neq 0 \right\}.$

2.
$$A = (GL_2(\mathbf{R}), \cdot)$$
 and $B = \left\{ \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}, a \in \mathbf{R} \right\}.$

3. $A = (\mathbf{Q}^*, \times)$ and $B = \{2^n, n \in \mathbf{Z}\}.$

Problem 2.(6 points.) Below is a partially completed Cayley table of a **group**. Fill in the missing parts of the table.

*	a	b	c	d
a	b		d	
b	a			
c			b	
d				b