Section 005, M. Bilu
Question 1.(4 points.) Let G be a group and let H be one of its subgroups.

1. State Lagrange's theorem.
2. What is the definition of the index of H in G ?

Question 2.(6 points.)

1. $\{0,4\}$ is a subgroup of $\mathbf{Z} / 8 \mathbf{Z}$. Write down its left cosets in $\mathbf{Z} / 8 \mathbf{Z}$.
2. $\{\mathrm{id},(12)\}$ is a subgroup of $\left(\mathfrak{S}_{3}, \circ\right)$. How many right cosets does it have in \mathfrak{S}_{3} ? Write them down.

Question 3.(6 points.) Give the list of the subgroups of ($\mathbf{Z} / 15 \mathbf{Z},+$).

Question 4. (4 points.) Let p be a prime number. Let G be a group of order p. Show that G is a cyclic group.

Bonus. Let $n \geq 2$ be an integer. Let's assume that for any $k \in\{1, \ldots, n-1\}, k^{n-1} \equiv 1(\bmod n)$. Show that n is a prime number.

