Feuille d'exercices 3

1. Convergences

Exercice 1.

Soit (X_n) une suite de variables aléatoires de densités $f_n(x) = \frac{n}{\sqrt{\pi}} \exp(-(nx - n - 1)^2)$. Reconnaître la loi de X_n ; déterminer $E[X_n]$ et $Var(X_n)$. Que peut-on dire de la convergence de (X_n) ?

Exercice 2. Déterminer la limite en loi d'une suite de variables aléatoires $(\frac{X_n}{n})$, X_n suivant une loi géométrique de paramètre $\frac{\lambda}{n}$.

Exercice 3. Soit (U_n) une suite de variables aléatoires indépendantes de loi uniforme sur [0,1].

- (1) Montrer que $S_n = \frac{1}{n} \sum_{i=1}^n \ln(U_i)$ converge presque sûrement et donner sa limite.
- (2) Que peut-on en déduire pour la suite $X_n = (\prod_{i=1}^n U_i)^{\frac{\alpha}{n}}$, où $\alpha \in ?$
- (3) Montrer également que $Z_n = e^{\alpha\sqrt{n}} (\prod_{i=1}^n U_i)^{\alpha/\sqrt{n}}$ converge en loi.

Exercice 4. Soit (X_n) une suite de variables aléatoires indépendantes de loi exponentielles de paramètre λ . On considère la suite définie par $Y_n = \frac{n}{\sum_{i=1}^n X_i}$.

- (1) Que peut-on dire de la convergence de (Y_n) ?
- (2) Montrer que $\sqrt{n}(Y_n \lambda)$ converge en loi vers une loi normale centrée, et d'écart-type λ .
- (3) En déduire le comportement de $\sqrt{n}\frac{(Y_n-\lambda)}{Y_n}$

Exercice 5. Soient f et g deux fonctions continues positives sur [0,1], telles que g ne s'annule pas. Soit $(X_n)_{n\in\mathbb{N}}$ une suite de variables aléatoires indépendantes de même loi uniforme sur [0,1]. On considère la suite de variables aléatoires :

$$Z_n = \frac{\sum_{i=1}^{n} f(X_i)}{\sum_{i=1}^{n} g(X_i)}$$

- (1) Montrer que Z_n converge presque sûrement vers une constante (et donner la constante).
- (2) La suite $u_n = \int_{[0,1]^n} \frac{\sum_{i=1}^n f(x_i)}{\sum_{i=1}^n g(x_i)} \prod_{i=1}^n dx_i$ admet-elle une limite? Si oui, quelle est cette limite?

Exercice 6. En considérant une suite de variables aléatoires indépendantes de loi de Poisson de paramètre 1, montrer que si f est continue bornée,

$$\lim_{n\to\infty} \sum_{k=0}^{\infty} \exp(-\lambda n) \frac{(\lambda n)^k}{k!} f(k/n) = f(\lambda) \text{ et que}$$

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \text{ tend vers } \frac{1}{2} \text{ lorsque } n \to \infty.$$

2. Espérances conditionnelles

Exercice 7. Soient X_1, \ldots, X_n des variables aléatoires i.i.d. dans L^1 et $S_n = X_1 + \cdots + X_n$.

1. Montrer que

$$\mathbb{E}[X_1 \mid S_n] = \dots = \mathbb{E}[X_n \mid S_n]$$

2. En déduire $\mathbb{E}[X_1 \mid S_n]$

Exercice 8.

1. Soient X_1 et X_2 deux variables aléatoires indépendantes, de loi binomiales de paramètres respectifs (n_1, p) et (n_2, p) .

Déterminer la loi de X_1 sachant $X_1 + X_2 = n$. En déduire $\mathbb{E}(X_1|X_1 + X_2)$.

2. Soient X_1, \ldots, X_p p variables aléatoires indépendantes, de loi de Poisson de paramètres $\lambda_1, \ldots, \lambda_p$.

Déterminer la loi de $X_1 \dots X_{p-1}$ sachant $X_1 + \dots + X_p = n$. En déduire $\mathbb{E}(X_1 | X_1 + X_2)$.

- Exercice 9. (Somme d'un nombre aléatoire de variables aléatoires, et applications) Soit (Ω, \mathcal{A}, P) un espace probabilisé. Soient, sur cet espace, N une variable aléatoire à valeurs dans \mathbb{N}^* , et (X_n) une suite de variables aléatoires à valeurs dans \mathbb{N} , toutes les X_n étant de même loi, indépendantes entre elles et indépendantes de N. On pose, pour $\omega \in \Omega : S_N(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega)$.
- a. Déterminer $E[S_N|N]$, puis $E[S_N^2|N]$. En déduire l'espérance puis la variance de S en fonction de celles de N et de X_1 (supposées finies). Observer qu'on retrouve bien les formules attendues dans le cas particulier où N prend une seule valeur avec probabilité 1 (i.e. si N n'est pas aléatoire, mais $fix\acute{e}$).
- **b.** Une poule couve N oeufs, N suivant une loi de Poisson de paramètre λ . Un poulet sort de chaque oeuf avec probabilité p, indépendamment des autres oeufs. Soit S le nombre de poulets. Déterminer la loi de S sachant N, E[S|N], E[S] et E[N|S].
- c. (Nombre de blessés par accident dans une usine) Dans une usine, le nombre d'accidents qui surviennent en un mois est une variable aléatoire d'espérance 15 et de variance 36; le nombre de blessés dans le *i*ème accident est une variable aléatoire d'espérance 3 et de variance 4. Les nombres de blessés sont indépendants, d'un accident à l'autre, et indépendants du nombre d'accidents. Quelles sont la moyenne et la variance du nombre de blessés en un mois dans cette usine?
- d. (La transmission du nom "Schtroumpf") À l'origine, un seul individu s'appelait "Schtroumpf" (c'est, bien sûr, le Grand Schtroumpf). Lui et son épouse forment la "génération 0". Soit N_n le nombre d'hommes de la génération n portant le nom "Schtroumpf". Soit X_i le nombre de fils qu'engendre le i-ième monsieur "Schtroumpf" de la génération n: on suppose que les variables aléatoires X_i sont indépendantes, et de même loi (la même pour toutes les générations). Exprimer N_{n+1} en fonction de N_n et des X_i . En déduire des relations de récurrence entre les $e_n = E(N_n)$ et les $v_n = V(N_n)$ (où interviennent les constantes $\alpha = E(X_1)$ et $\beta = V(X_1)$, puis les expressions de e_n et v_n pour tout $n \geq 0$. Qu'advient-il de e_n et de v_n quand $n \to +\infty$? (Discuter en fonction de la valeur de α , en donnant la signification concrète des différents cas distingués.)

Exercice 10. (Réponse intuitive autorisée)

On lance une pièce non pipée un nombre infini de fois. On note N_k le nombre de lancers nécessaires pour obtenir k pile consécutifs. Montrer que si k > 1, $E[N_k|N_{k-1}] = N_{k-1} + 1 + \frac{1}{2}E[N_k]$, et en déduire $E[N_k]$.

Exercice 11. Soit (X,Y) un vecteur gaussien de loi $N(0,\Gamma)$ où

$$\Gamma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$$
 avec $|\rho| < 1$.

Cela implique donc que (X,Y) a pour densité $\frac{1}{2\pi\sqrt{1-\rho^2}}\exp(-\frac{1}{2(1-\rho^2)}(x^2-2\rho xy+y^2).$

Montrer que la loi conditionnelle de X sachant Y=y est une loi normale $N(\rho y, \sqrt{1-\rho^2})$. En déduire E[X|Y].

Exercice 12. Soit (X,Y) un couple de variables aléatoires telles que la densité de Y sachant X est donnée pour tout k dans \mathbb{N}^* par $f_Y(y|X=k)=k(1-y)^{k-1}1_{[0,1]}(y)$ et où X suit une loi géométrique de paramètre p. Déterminer la loi de Y et la loi de X sachant Y.

Exercice 13. Soit X une variable aléatoire à valeurs dans \mathbb{N} et Y une variable aléatoire à valeurs réelles, de loi exponentielle de paramètre 1. On suppose que la loi de X conditionnellement à Y est une loi de Poisson de paramètre Y. Déterminer alors $E[\Phi(X)\Psi(Y)]$ si Φ est une fonction de \mathbb{N} dans \mathbb{R}^+ et Ψ une fonction positive mesurable. Puis donner la loi de X et enfin la loi conditionnelle de Y sachant X = k.