Licence Mathématiques 2010/2011 Géométrie différentielle Courbes gauches: courbure, torsion, etc

(1) Soit $\gamma: I \to \mathbb{R}^3$ un arc paramétré birégulier. On note $(\tau(t), \nu(t), \beta(t))$ le repère de Frenet au point $\gamma(t)$, et K(t) et T(t) la torsion en ce point. Ecrire $\tau'(t), \nu'(t)$ et $\beta'(t)$ dans la base (τ, ν, β) en fonction de $||\gamma'(t)||$, de K et de T.

Vérifier $\det(\tau, \tau', \tau'') = -||\gamma'||^3 K^2 T$, et en déduire la formule pour la torsion $T(t) = -\frac{\det(\gamma', \gamma'', \gamma''')}{||\gamma' \wedge \gamma''||^2}$.

(2) Déterminer le repère de Frenet, la courbure et la torsion des arcs définis par les

- paramétrisations suivantes:
 - (a) $x(t) = a \cos t, y(t) = a \sin(t), z(t) = bt, t \in [0, 2\pi].$ (b) $x(t) = t, y(t) = \frac{t^2}{2}, z(t) = \frac{t^3}{6}, t \in \mathbb{R}$ (c) $x(t) = e^t, y(t) = e^{-t}, z(t) = \sqrt{2}t, t \in \mathbb{R}$
- (3) On considère la courbe C^{∞} de \mathbb{R}^3 définie par $\gamma(t)=(t,e^{-\frac{1}{t^2}},0)$ si $t<0, \gamma(t)=0$ $(t, 0, e^{-\frac{1}{t^2}})$ si t > 0 et $\gamma(0) = (0, 0, 0)$.
 - (a) Montrer que γ est régulière, vérifier que les seuls points de courbure nulle sont t = 0 et $t = \pm \sqrt{\frac{2}{3}}$.
 - (b) Déterminer la limite du plan osculateur à la courbe lorsque t tend vers 0^+ et vers 0^- .
 - (c) Montrer que la torsion est nulle en tout point birégulier, mais que la courbe n'est pas plane.
- (4) Soit $\gamma: I \to \mathbb{R}^3$ une courbe paramétrée par sa longueur d'arc, vérifiant $\gamma(0) = 0$. On note $(\tau(0), \nu(0), \beta(0))$ le repère de Frenet au point de paramètre 0 (supposé birégulier), et K_0 et T_0 la courbure et la torsion en ce point.

Donner le développement limité à l'ordre 3 de γ en t=0 (dans la base de Frenet). En déduire un développement limité de la distance de $\gamma(t)$ au plan osculateur à γ en 0. Montrer que si $T_0 \neq 0$, la courbe traverse son plan osculateur en 0.

- (5) Soit C le support d'une courbe paramétrée birégulière lisse paramétrée par sa longueur d'arc $s \in I \mapsto M(s)$. On note $(\tau(s), \nu(s), \beta(s))$ le repère de Frenet au point de paramètre s. On suppose que les plans osculateurs de C passent tous par un même point Ω .
 - (a) Justifier que pour tout s dans $I(\Omega \vec{M}(s), \beta(s)) = 0$.
 - (b) On se propose de montrer que β est constant sur I. Pour cela on raisonne par l'absurde en supposant qu'il existe s_0 dans I tel que $\frac{d\beta}{ds}(s_0) \neq 0$. (i) Justifier qu'il existe un intervalle J sur lequel $\frac{d\beta}{ds}$ est non nul.

 - (ii) Montrer $\forall s \in J, (\Omega \vec{M}(s), \nu(s)) = 0.$
 - (iii) Montrer $\forall s \in J, (\Omega \vec{M}(s), \tau(s)) = 0.$
 - (iv) Conclure

(6) Courbe gauche tracée sur une sphère On suppose que $c: I \to \mathbb{R}^3$ est une courbe lisse birégulière paramétrée par la longueur d'arc. On note (τ, ν, β) le repère de Frenet au point de paramètre s, K la courbure et T la torsion.

On suppose dans un premier temps que c est tracée sur la sphère de centre O et de rayon r, c'est-à-dire que pour tout s dans I, $||O\vec{c}(s)||^2 = r^2$.

- (a) Montrer que $\tau(s)$ et $\overrightarrow{Oc(s)}$ sont orthogonaux.
- (b) En déduire qu'il existe des fonctions C^{∞} a et b de I dans \mathbb{R} vérifiant $\forall s \in I, a(s)^2 + b(s)^2 = 1$ et $\forall s \in I, Oc(s) = a(s)\nu(s) + b(s)\beta(s)$.
- (c) Dériver cette dernière équation; en déduire a et b en fonction de K et T.
- (d) En déduire que K et T vérifient $r^2 = (\frac{1}{K})^2 + ((\frac{1}{K})'\frac{1}{T})^2$. En particulier, le rayon de courbure de c est forcément inférieur à r.
- (e) Réciproquement, on suppose maintenant que K et T vérifient $0=(\frac{1}{K})^2+((\frac{1}{K})'\frac{1}{T})^2.$
 - (i) Montrer qu'on peut alors trouver des fonctions a et b C^{∞} de I dans \mathbb{R} telles que $s \mapsto O\vec{c(s)} a\nu(s) b\beta(s)$ soit constante sur I.
 - (ii) Vérifier que $a^2 + b^2$ est constante.
 - (iii) En déduire que c est tracée sur une sphère.
- (7) On définit une hélice généralisée comme une courbe régulière de \mathbb{R}^3 dont la tangente fait un angle constant avec une direction fixe. Soit $\gamma: I \to \mathbb{R}^3$ une courbe birégulière C^{∞} de courbure K et de torsion T partout non nulles.
 - (a) Montrer que γ est une hélice généralisée si et seulement si $\frac{K}{T}$ est constant.
 - (b) Montrer que γ est une hélice généralisée si et seulement si il existe un plan fixe contenant le vecteur normal $\nu(t)$ pour tout t.
 - (c) Montrer que γ est une hélice généralisée si et seulement si $\beta(t)$ fait un angle constant avec une direction fixe.
- (8) On considère dans \mathbb{R}^3 une courbe **plane** γ birégulière paramétrée par sa longueur d'arc $\sigma \mapsto m(\sigma)$. On note $r(\sigma)$ le rayon de courbure au point $m(\sigma)$, et (t, n) le repère de Frenet en ce point. On considère de plus un vecteur unitaire \vec{k} normal au plan de γ , et on définit une hélice C par la paramétrisation $\sigma \mapsto M(\sigma) = m(\sigma) + a\sigma \vec{k}$, où a est une constante.
 - Exprimer le rayon de courbure R et la torsion T de C en fonction de r; vérifier en particulier que $\frac{R}{r}$ est constant.
 - Exprimer le repère de Frenet (τ, ν, β) au point $M(\sigma)$ de C en fonction de t, n et \vec{k} .
- (9) Soit Γ une courbe lisse trirégulière paramétrée par sa longueur d'arc. On note C(s) le centre de courbure à Γ au point de paramètre s et par Γ_1 la courbe paramétrée par $s \mapsto C(s)$. On suppose que Γ est de courbure constante.
 - (a) Montrer que Γ_1 est également de courbure constante. Si $(\tau(s), \nu(s), \beta(s))$ et $(\tau_1(s), \nu_1(s), \beta_1(s))$ désignent les repères de Frenet aux points de paramètre s de Γ et Γ_1 , vérifier qu'on a $\tau_1 = \epsilon \beta$, $\nu_1 = -\nu$ et $\beta_1 = -\epsilon \tau$, avec $\epsilon \in \{-1, 1\}$.
 - (b) Que peut-on dire de la torsion de Γ_1 si Γ est de plus de torsion constante?