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Abstract

Numerical simulations of non-newtonian fluids such as wormlike micellar so-
lutions in confined geometries are of great interest in the oil industry. Their
main property called shear-banding is a brutal transition from a very viscous
state to a very fluid state above a certain threshold value of shear stress.
This feature leads to a very complex behavior in 3D flows.

A modified version of the Johnson-Segalman’s model, adapted to our situ-
ation (flows with a strong extensional component) is presented. A particular
attention is paid to inlet and outlet boundary conditions, and a Poiseuille-
like submodel is derived in order to get natural velocity and stress profiles
that can be used at the boundaries. A numerical method is then developed,
and stability issues are presented.

Our results show the interest of the modified Johnson-Segalman’s model
performed in this article. A set of 3D numerical simulations are then pre-
sented in order to understand the influence of the junction geometry upon
the jamming effects observed in the behaviour of this kind of fluids.

Keywords: Rheology, Wormlike micelles, Microfluidics, Shear banding,
T-Junctions, Jamming effects, 3D simulations

1. Introduction

1.1. General context

This paper presents some numerical analysis and simulations on a model
used to describe the non-newtonian behavior of wormlike micelles solutions.
Wormlike micelles are polymer-like microscopic structures, that can break
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and reform permanently (for this reason micelles are often referred as ”living
polymers”). According to its very singular non-newtonian properties, worm-
like micelles are used in many fields of the industry from food processing to
oil recovery [14].

Microscale
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Mesoscale Macroscale

Figure 1: Flow of a wormlike micellar solution, from the micro-scale to the macro-scale

Numerical simulations in non-newtonian fluid dynamics yield many chal-
lenging issues (see [20] as a review of numerical problems encountered in this
field), the most notable problem being the so-called ”high Weissenberg num-
ber problem” (see [10] [11]). Since fluids such as wormlike micelles do not
allow situations in which elastic effects are too large (above a critical shear
stress the behavior of the fluid becomes close to newtonian), the high Weis-
senberg number problem doesn’t occur here. However, many other issues
arise in our case, such as extensional instabilities and the choice of appropri-
ate boundary conditions.

Our study will focus on oil recovery applications. Usually, micro-fluidic
networks serve as simplified experimental models to understand percolation
and drainage in porous media (see [24] for a review of the subject). In the
following work, we focus on the case of a T-shaped junction, as an element of
a more complex network. The geometry considered here is depicted on fig-
ure 2. In simulations, the fluid is injected through the boundary Γ3 and exits
through Γ1 and Γ2. The walls are denoted Γw. The expected phenomenon
here is the jamming of one branch of the junction for some values of the inlet
flow rate (as observed in [17]). This phenomenon can be explained, in some
extent, by the particular shear rheology of the fluid.
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Figure 2: Schematic view and notations for the T-shaped domain

The main rheological feature of wormlike micelles is ”shear-banding”,
which can be defined as the capacity of a fluid to separate into phases of
different viscosities when exposed to a shear stress [18]. For wormlike mi-
celles, the micro-structural interpretation of shear-banding is the following:
at rest, the micelles are in an entangled state, but when a sufficiently high
shear stress is applied they align quickly in the flow direction. As a con-
sequence, when the applied shear stress is non-homogeneous (like in a pipe
flow), high shear rate bands are formed in the area of high shear stress (see
Figure 1), leading to plug flows, as observed also with yield stress fluids. An
experimental work that shows this phenomenon can be found in [16].

A particular model has been shown relevant for the description of flows of
wormlike micellar solutions: the Johnson-Segalman model introduced in [13]
(see [5] for a complete review of models for wormlike micelles, and more
recently [26]). The originality of this model is that, under a constant shear
rate, it allows a non-monotonic relation between the shear rate and the shear
stress (Figure 3). However, in a real hydrodynamic context (shear rate given
by a momentum equation) the necessary monotonicity of the shear rate /
shear stress relation leads to the selection of a stress plateau. This stress
plateau is history-dependent and some hysteresis on this model has been
shown in literature [1]. The addition of a diffusion term in the model allows
the selection of a unique stress plateau (for physical interpretation of this
term see [8]).
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Figure 3: Typical flow curve of the Johnson-Segalman model

1.2. The main difficulties

Despite the fact that it has become a standard model for wormlike mi-
celles, the Johnson-Segalman model (as many linear models) is not adapted
when one wants to deal with extensional flows . Such models are valid in
the limit of small extensional rates. Recall that our aim is to study the
flow through a T-shaped junction and that flows in such a geometry exhibit
strong extensional rates. In order to counterbalance this effect, among a lot
of possibilities, we chose to add a quadratic term in the constitutive equation
(see [12]).

Some issues concerning the appropriate boundary conditions to be set
at Γ1,2,3 are also discussed through the following article. First, concerning
inlet boundary conditions the problem is that typical inlet velocity profiles
are, in our case, much different from the classical Poiseuille profile (derived
from the Stokes model without non-newtonian extra-stress). By assuming a
parallel invariant flow along one direction in the full 3D system, we derived
a Poiseuille-like model for non-newtonian fluids that succeeded in retrieving
the typical ”plug-flow” profile observed in experiments. For outlet conditions
the problem is much more delicate, the constraint being that the inlet flow
rate must equal the sum of the outlet flow rates. Still, there is an infinity
of ”plug-flow” profiles that fulfill this requirement. Two approaches were
studied. The first, based on simplifying hypothesis, allowed us to compute
an appropriate set outlet velocities. The other approach is based on ”free
flow” boundary conditions.
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1.3. Outline of the paper
In Section 2, we present our model : governing equations and models for

boundary conditions. First, in Section 2.1 the Johnson-Segalman constitutive
equation is introduced. We present the advantages and the drawbacks of this
model through simplified situations (fixed homogeneous shear stress, fixed
extensional rate). This lead us to a modification of the initial constitutive
equation, presented in Section 2.1.2. The derivation of the Poiseuille-like
model mentioned above is then presented in Section 2.1.3.

Once the model is known, a numerical scheme based on finite difference
methods is developed in Section 3. This scheme relies on an explicit cou-
pling between the momentum equation and the constitutive equation. It
is expected that such an explicit coupling should induce instabilities if the
time step is not chosen carefully. For this reason an analysis of stability is
performed in Section 3.4. First, linear stability is proved on the continuous
model, and then a necessary stability condition on the time step is deter-
mined.

The Section 4 details all the numerical results obtained with the model
and the numerical methods mentioned above. In order to validate our model,
we investigate in Section 4.1 two cases: a strong extensional flow in a cross
slot domain, and the micro-fluidic junction used in experiments. Both cases
will illustrate the necessity of a non-linearity in the constitutive equation.
Then, the non-standard behavior observed on wormlike micelles flows for
a strongly asymmetrical junction is shown through numerical simulations.
Finally we investigate the sensitivity of outlet flow rates distribution to the
asymmetry of the junction.

2. Problem setting

Let us consider a domain Ω describing a T-shaped micro-fluidic junction
(see Figure 2).

2.1. Governing Equations
The fluid described here is supposed to be incompressible. Moreover, the

low dimensions involved in micro-fluidics (∼ 100µm) usually leads to very
low Reynolds number flows. Therefore, it is commonly admitted that the
Stokes model is appropriate in this context:

∇ · T = ∇P , (2.1)

∇ · V = 0 , (2.2)
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where T represents the fluid stress tensor, P the pressure and V = (u, v, w)
the velocity. Considering a Jeffrey fluid, the stress tensor T reads:

T = 2 ηD +Σ, (2.3)

where η represents a characteristic viscosity of the fluid (commonly referred
as the ”solvant viscosity”), D the Cauchy’s strain tensor, and Σ the extra
stress tensor. In order to close the system, one needs to give an equation
on Σ. Several possibilities exist, we chose to study the Johnson-Segalman
constitutive law, which is one of the most adapted for shear banding fluids.

2.1.1. The Johnson-Segalman constitutive equation

The diffusive Johnson-Segalman model [13] reads:

⋄

Σ = 2GD − 1

τ
Σ+D∆Σ , (2.4)

where G is an elastic modulus, τ a characteristic local relaxation time, and
D a diffusion coefficient. Thanks to the diffusion term introduced in [8],
the hysteretic behavior of the original model is suppressed. The symbol ⋄
represents the Gordon-Showalter time derivative of the stress tensor Σ:

⋄

Σ = (∂t + V · ∇)Σ− (ΩΣ−ΣΩ)− a(DΣ +ΣD) (2.5)

where:

D =
∇V +∇V t

2
,

Ω =
∇V −∇V t

2
.

The full model hence reads :














∇ · (2 ηD +Σ) = ∇P ,

∇ · V = 0 ,
⋄

Σ = 2GD − 1

τ
Σ +D∆Σ .

(2.6)

This model has been used extensively in literature for the description of
wormlike micelles flows ([19] [9]), mostly for it’s interesting behavior in the
particular case of shear flows. Let us now discuss the pertinence of the
model (2.6) with the study of two particular situations : the shear flow and
the extensional flow.

6



The homogeneous shear flow.
In this first study, we consider an unidirectional shear flow, invariant

along x. The strain hence writes :

∇V =





0 0 γ̇
0 0 0
0 0 0



 . (2.7)

Moreover, the stress is supposed to be homogeneous. By plugging the strain
(2.7), and the above hypotheses into the full model, one can prove that the
system (2.6) reduces to :























η γ̇ + σxy = T xy
a ,

∂tσ
∗ = 2 (a2 − 1) γ̇ σxy − 1

τ
σ∗ ,

∂tσ
xy =

1

2
γ̇ σ∗ − 1

τ
σxy +G γ̇ ,

(2.8)

where σ∗ = (a − 1) σxx + (a + 1) σyy, and T xy
a is the (given) applied shear

stress. In the following, we consider two situations : a slowly increasing
shear stress (T xy

a (t) = βt with β << G/τ) and a slowly decreasing shear
stress (T xy

a (t) = Tmax − βt with β << G/τ).
As we can see on Figure 4, the values of the shear stress/strain are dis-

tributed on two different branches : the low shear rate branch, which corre-
sponds to a high viscosity and the high shear rate branch which corresponds
to a low viscosity. If the shear stress is raised above a certain threshold
value, the shear rate jumps up. Similarly, if we decrease the shear stress
underneath an other threshold value, the shear rate jumps down. In an het-
erogeneous situation, this threshold behavior leads to the coexistence of two
phases (fluid/viscous) within the same fluid. This phenomenon is often re-
ferred as ”shear-banding”. Despite this interesting behavior in a shear flow,
it can be shown that the Johnson-Segalman model is not relevant for the
description of an extensional flow, as shown in the following situation.

The homogeneous extensional flow.
Let us consider the following extensional flow:

∇V =





2 ε̇ 0 0
0 −ε̇ 0
0 0 −ε̇



 .
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Figure 4: Rheological curves obtained on the model (2.8) for the following set of pa-
rameters: G = 150Pa, τ = 0.5 s, η = 1Pa.s, a = 0.9. The squares represent the
shear stress/strain relation for the increasing T xy

a
, and the triangles represent the shear

stress/strain relation for the decreasing T xy

a
. Dashed lines : stress thresholds.
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where ε̇ is the extension rate (supposed constant and known). If we suppose
the stress and strain to be homogeneous, the system (2.6) becomes:



































∂tσ
xx =

(

2 a ε̇− 1

τ

)

σxx + 2G ε̇ ,

∂tσ
yy = −

(

a ε̇+
1

τ

)

σyy − G ε̇ ,

∂tσ
zz = −

(

a ε̇+
1

τ

)

σzz − G ε̇ ,

(2.9)

We hence deduce the steady states for the first normal stress:

σxx(ε̇) = 2Gτ
ε̇

1− 2 a τ ε̇
.

From the first equation in (2.9) and (2.10) it is clear that the model doesn’t
admit a steady state for ε̇ = (2 a τ)−1. In fact all the steady states for
ε̇ > (2 a τ)−1 are unstable steady states since the value of the ”growth rate”
of σxx ((2.9), first equation) is positive for these values of ε̇. As a consequence,
no steady state can be reached for the first normal stress above a certain value
of the extension rate. This infinite growth of the first normal stress above
a critical value of the extension rate is a well known unphysical behavior,
which is commonly attributed to the very linear nature of the model. A
modification of the model is hence performed in the following section.

Note that one could argue that supposing a steady homogeneous strain is
not realistic, and that effects of the feedback of the extra-stress on the strain
via the momentum equation could suppress this non-physical behavior. In
section 4.1.1 we show is some numerical simulations that the instability shown
here persists even without the hypothesis mentioned above.

2.1.2. The non linear model

Following the approach of Giesekus [12], we add a second order non-
linearity to the system:

⋄

Σ = 2GD − 1

τ
Σ− κ

G τ
Σ2 +D∆Σ , (2.10)

where κ is a dimensionless number to be taken between 0 and 0.5. Again,
we investigate the behavior of this model in the case of an homogeneous
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extensional flow. In this particular case the model (2.10) reduces to:



































∂tσ
xx =

(

2 a ε̇− 1

τ

)

σxx − κ

G τ
(σxx)2 + 2G ε̇ ,

∂tσ
yy = −

(

a ε̇+
1

τ

)

σyy − κ

G τ
(σyy)2 − G ε̇ ,

∂tσ
zz = −

(

a ε̇+
1

τ

)

σzz − κ

G τ
(σzz)2 − G ε̇ ,

(2.11)

The steady states of the model are defined for all ε̇, and it can be proved
easily that they are all stable. The Figure 5 (squares) shows these steady
states computed for various values of the extension rate. We notice that the
singular behavior observed for the linear model (circles) is suppressed here.
The steady stress/strain relation is asymptotically linear and the slope of
this asymptote corresponds to a limit extensional viscosity which is higher
than the viscosity at rest. This behavior is quite satisfactory. We compare
both models in Section 4.1 in some ”real” configurations, that is, when the
rate of deformation is given by the solution of a momentum equation, instead
of a fixed given value, as here. Finally, the full model studied in this paper
reads:















∇ · (2 ηD +Σ) = ∇P ,

∇ · V = 0 ,
⋄

Σ = 2GD − 1

τ
Σ− κ

G τ
Σ2 +D∆Σ .

(2.12)

Since we are interested in realistic situations, that is we deal with a bounded
domain, we need to introduce suitable boundary conditions to System 2.12.
In literature, very few results are available, in particular concerning shear-
banding fluids. One of the main interest of this article is to bring to the fore
appropriate boundary conditions for the inlet/outlet flow. For that purpose
we introduce a very useful sub-model of (2.12): the ”Poiseuille-like” model.

2.1.3. A Poiseuille-like model

In this section we consider a sub-model of (2.12). In the spirit of [7], the
aim here is to describe a flow through a straight infinite channel along the x
direction (for instance) upon which a pressure drop δP is applied. In such a
situation it is known that the following hypothesis can be made. We let the
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Figure 5: Normal stress / extension rate relations obtained on the model (2.8) for the
following set of parameters: G = 150Pa, τ = 0.5 s, η = 1Pa.s, a = 0.9. The circles
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flow to be unidirectional along x:

V =





u
0
0



 , (2.13)

and that the velocity and stress tensor are invariant along x:

∂xu = 0 , (2.14)

∂xΣ = 0 . (2.15)

By plugging (2.13), (2.14) and (2.15) into (2.12), we obtain the 2D Poiseuille-
like model:







2 η∆yzu+ ∂yΣ
xy + ∂zΣ

xy = δP ,
⋄

Σ = 2GD − 1

τ
Σ− κ

G τ
Σ2 +D∆Σ .

(2.16)

Note that, in this case the strain tensor has a much simpler expression:

∇V = ∂yu (δ
1,2
i,j )0≤i,j≤3 + ∂zu (δ

1,3
i,j )0≤i,j≤3 ,

(δ1,2
i,j )0≤i,j≤3 (r.p. (δ

1,3
i,j )0≤i,j≤3) being the matrix having only 0 entries except

on the first row, second column (r.p. third column), for which the value is 1.
The main interest of the model (2.16) is that it reproduces the typical

velocity profile for the Johnson-Segalman fluid in a straight channel. As a
consequence, the profile obtained by solving the system (2.16) at steady state
(see Figure 6) is a good candidate for an inlet/outlet boundary condition.
Moreover, the only input data here is the inlet pressure gradient δP , which is
often accessible in experiments. Note that the system (2.16) is a 2D system so
the cost of computing this velocity profile is rather small (in our 3D context).

2.2. Boundary conditions

One of the main issues when dealing with micro-fluidic flow simulations
is the setting of appropriate inlet conditions (Γ3). For instance, in our case,
the typical velocity profiles are very different from standard Poiseuille pro-
files (see Figure 6). In order to deal with this difficulty, we first solve nu-
merically the submodel (2.16). In practice the solution always reaches a
stationary state, which is denoted in the sequel V δP (y, z) = (uδP (y, z), 0, 0)
and ΣδP (y, z). Then our choice is to set at the inlet:

V |Γ3
= V

δP (y, z) ,

Σ|Γ3
= ΣδP (y, z) .
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Figure 6: Typical inlet velocity profile obtained by solving numerically the sub-
model (2.16) at steady-state

Note that, by this procedure, we indirectly set the inlet pressure gradient.
Concerning the outlet (Γ1 and Γ2), the situation is a bit delicate. Two

different situations are introduced here. In the first one, we used the station-
ary solution of the Poiseuille-like model (2.16) in order to prescribe the outlet
velocity and stress profiles though Γ1 and Γ2. It is important to notice that
the input parameters δP1 and δP2 have to be well chosen in this case, since
we need to ensure the incompressibility condition:

∫

Γ3

V
δP3 · ~n =

∫

Γ1

V
δP1 · ~n +

∫

Γ2

V
δP2 · ~n .

In the second situation, we use classical Neumann boundary conditions as
follows:

∂~nV |Γ1,2
= 0 , (2.17)

∂~nΣ|Γ1,2
= 0 . (2.18)

The comparison between the two outlet boundary conditions described
above is discussed through numerical simulations in section 4.2.

It remains to set the conditions on the walls Γw for both V and Σ. In
the context of micro-fluidics, it is still an open question. Some experiments
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preformed in [16] suggested that the chemical nature of the surface as well as
it’s roughness could have an important influence on the flow. In this paper
we focused on the following boundary conditions:

V |Γw
= 0 , (2.19)

∂~nΣ|Γw
= 0 . (2.20)

The Dirichlet condition on the velocity (2.19) is a no-slip boundary condition.
The Neumann boundary condition upon the stress tensor (2.20) components
implies that the extra-stress does not induce any tangential force at the
vicinity of the walls. As a consequence, below the critical regime from which
shear banding occurs, some ”apparent slip” is observed, even though a no-slip
condition is set for the velocity.

3. Discretization of the equations

In this section, we introduce our numerical scheme. As already explained,
our aim is to perform 3D numerical experiments. Let us first recall the full
model (2.12):

∇ · (2 ηD +Σ) = ∇P , (3.21)

∇ · V = 0 , (3.22)

∂tΣ+ V · ∇V − fa(Σ,∇V ) = 2GD − 1

τ
Σ− κ

G τ
Σ2

+D∆Σ .(3.23)

For simplicity, in equation (3.23) we denote by fa(Σ,∇V ) the Gordon-
Schowalter objective derivative terms:

fa(Σ,∇V ) = (ΩΣ−ΣΩ) + a(DΣ +ΣD) .

Note that, for a given strain ∇V , fa is linear with respect to Σ.

3.1. Semi discretization in time

Let δt be the time step, and tn = nδt the discretized time, where n ∈ N.
Let us also denote by V n(x, y, z) the velocity computed at time tn, and
Σn(x, y, z) the extra-stress computed at time tn. Since (3.21) is a stationary
equation, the discretization in time is straightforward:

η∆V
n +∇ ·Σn = ∇P n

∞ . (3.24)
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Note that P n denotes here the pressure that ensures the divergence-free con-
dition at time tn.

Following [3], we perform a splitting in time on equation (3.23) with
two steps. The first step of the splitting includes transport and diffusion
(non-local terms). We hence calculate an intermediate value Σn+ 1

2 from the
supposed known Σn:

Σn+1/2 −Σn

δt
= V

n · ∇Σn +D∆Σn+1/2 . (3.25)

The second step of the splitting deals with the objective derivative and the
source terms (local terms), it consists in solving an ODE in each point of the
domain:

Σn+1 −Σn+ 1

2

δt
= fa(V

n,Σn+ 1

2 ) + 2GD[V n]− 1

τ
Σn+ 1

2 − κ

G τ

(

Σn+ 1

2

)2

.

(3.26)
As stated before, it remains to compute the pressure P n that ensures the
divergence-free condition (3.22) upon the velocity.

Consider the following problem (Σ being known) :

{

η∆V = ∇P −∇ ·Σ ,

∇ · V = 0 .
(3.27)

Finding the velocity and pressure that satisfy both momentum equation and
the divergence-free condition is a well-known problem, and many methods
already exist in order to solve it. Among them, the Uzawa algorithm [25]
is particularly adapted for solving Stokes flows. Considering a pseudo time
step δr, the Uzawa algorithm writes:

{

η∆V
r+1 − δr∇

(

∇ · V r+1
)

= ∇P r +∇ ·Σ ,

P r+1 = P r − δr∇ · V r+1 .
(3.28)

Note that δr has to be chosen small enough to ensure the stability of the
system, and big enough to ensure quick convergence. Practically we take δr
with the same order of magnitude as η. Once ||P r+1−P r||∞ ≤ ||P r+1||∞ 10−8,
we consider that the system (3.28) has reached convergence and we iterate
in time.
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3.2. Discretization in space

In this section we describe the set of finite difference methods used for
the discretization of (3.21)-(3.23) in space. Let us subdivide the domain into
the following regular cartesian mesh: xi = i δx, yj = j δy, zk = k δz. The
velocity nodes are placed in the following way:

ui,j,k = u(xi− 1

2

, yj, zk) ,

vi,j,k = v(xi, yj− 1

2

, zk) ,

wi,j,k = w(xi, yj, zk− 1

2

) .

The pressure and the extra stress components are given on the nodes of the
mesh:

Pi,j,k = P (xi, yj, zk) ,

Σi,j,k = Σ(xi, yj, zk) .

Figure 7: schematic view of a MAC mesh, relative placement of the nodes.

This placement for the variables V , P and Σ correspond to a staggered
grid, as represented on Figure 7. For simplicity, from now on, we leave the
subscript n that stands for the discretization in time.

3.2.1. Discretization of the momentum equation

In this section we focus on the space discretization of the equation :

η∆V − δr∇ (∇ · V )−∇P +∇ ·Σ = 0 , (3.29)
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We use the MAC scheme for the discretization of the first three terms of (3.29).
This scheme consists in evaluating the derivative in (3.29) by using centered
finite difference. The placement of the variables on a staggered grid as de-
scribed above ensures the second order convergence of V by using centered
finite differences. In our case, the difficulty lies on the discretization of the
term ∇ ·Σ.

The extra stress contribution ∇·Σ in the momentum equation is defined
in the following way:

∇ ·Σ =





∂xΣ
xx + ∂yΣ

xy + ∂zΣ
xz

∂xΣ
xy + ∂yΣ

yy + ∂zΣ
yz

∂xΣ
xz + ∂yΣ

yz + ∂zΣ
zz



 .

According to the MAC discretization, the first component of ∇ · Σ has to
be evaluated in a staggered cell centered on xi− 1

2
,j,k. The discretization of

∂xΣ
xx is straightforward since the Σ nodes are well placed to evaluate the x

derivatives at xi− 1

2
,j,k:

∂xΣ
xx(xi− 1

2

, yj, zk) ∼
Σxx

i,j,k − Σxx
i−1,j,k

δx
.

The other terms ∂yΣ
xy and ∂zΣ

xz need some interpolation in order to be
evaluated properly. As shown below, introducing the values of Σ on eight
nodes around the considered point, one can write

∂yΣ
xy(xi− 1

2

, yj, zk) ∼
Σxy

i,j,k − Σxy
i,j−1,k

δy
,

∂zΣ
xz(xi− 1

2

, yj, zk) ∼
Σxz

i,j,k − Σxz
i,j,k−1

δz
,

where the interpolated values are:

Σxy
i,j,k =

1

4

(

Σxy
i,j,k + Σxy

i−1,j,k + Σxy
i,j+1,k + Σxy

i−1,j+1,k

)

,

Σxz
i,j,k =

1

4

(

Σxz
i,j,k + Σxz

i−1,j,k + Σxz
i,j,k+1 + Σxz

i−1,j,k+1

)

.
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Inside the domain we hence have:
(

∇ ·Σ(xi− 1

2

, yj, zk)
)

· ~ex ∼
Σxx

i,j,k − Σxx
i−1,j,k

δx

+
Σxy

i,j+1,k + Σxy
i−1,j+1,k − Σxy

i,j−1,k − Σxy
i−1,j−1,k

4 δy

+
Σxz

i,j,k+1 + Σxz
i−1,j,k+1 − Σxz

i,j,k−1 − Σxz
i−1,j,k−1

4 δz
.

In a similar way, we obtain:

(

∇ ·Σ(xi, yj− 1

2

, zk)
)

· ~ey ∼
Σyy

i,j,k − Σyy
i,j−1,k

δy

+
Σxy

i+1,j,k + Σxy
i+1,j−1,k − Σxy

i−1,j,k − Σxy
i−1,j−1,k

4 δx

+
Σyz

i,j,k+1 + Σyz
i,j−1,k+1 − Σyz

i,j,k−1 − Σyz
i,j−1,k−1

4 δz
,

and
(

∇ ·Σ(xi, yj, zk− 1

2

)
)

· ~ez ∼
Σzz

i,j,k − Σzz
i,j,k−1

δz

+
Σxz

i+1,j,k + Σxz
i+1,j,k−1 − Σxz

i−1,j,k − Σxz
i−1,j,k−1

4 δx

+
Σyz

i,j+1,k + Σyz
i,j+1,k−1 − Σyz

i,j−1,k − Σyz
i,j−1,k−1

4 δy
.

3.2.2. Discretization of the constitutive equation

We recall that we apply a splitting scheme to the constitutive equa-
tion (3.23), to end up with the to substeps (3.25) and (3.26). We consider
the first step of the splitting (3.25) for the constitutive equation. The only
terms containing space derivatives are the advection term and the diffusion
term. The advection term V · ∇Σ is discretized by using an high order
scheme (WENO 5, [15]) in order to limit numerical diffusion. The diffusion
term is discretized with the second order 5-points scheme:

∆Σ(xi, yj, zk) ∼
Σi+1,j,k − 2Σi,j,k +Σi−1,j,k

δx2

+
Σi,j+1,k − 2Σi,j,k +Σi,j−1,k

δy2

+
Σi,j,k+1 − 2Σi,j,k +Σi,j,k−1

δz2
.
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In the second step of the splitting (3.25), the only terms containing space
derivatives are D and Ω. These terms need to be approached at the Σ nodes
(xi, yj, zk). They read:

D =
∇V +∇V

t

2
,

Ω =
∇V −∇V t

2
.

We hence need to approach:

∇V =





∂xu ∂yu ∂zu
∂xv ∂yv ∂zv
∂xw ∂yw ∂zw



 .

The discretization of the diagonal components ∂xu, ∂yv and ∂zw is straight-
forward since u, v and w are placed on the grid such that the divergence can
be evaluated at the second order at the Σ nodes (xi, yj, zk). Hence,

∂xu(xi, yj, zk) ∼
ui+1,j,k − ui,j,k

δx
,

∂yv(xi, yj, zk) ∼
vi,j+1,k − vi,j,k

δy
,

∂zw(xi, yj, zk) ∼
wi,j,k+1 − wi,j,k

δz
.

Following Section 3.2.1, the extra-diagonal components of ∇V need some
interpolations to be evaluated properly, for instance:

∂yu(xi, yj, zk) ∼
ui,j,k − ui,j−1,k

δy
,

where

ui,j,k =
1

4
(ui,j,k + ui−1,j,k + ui,j+1,k + ui−1,j+1,k) ,

which gives

∂yu(xi, yj, zk) ∼
ui,j+1,k + ui−1,j+1,k − ui,j−1,k − ui−1,j−1,k

4 δy
.
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In the same way, we get:

∂zu(xi, yj, zk) ∼
ui,j,k+1 + ui−1,j,k+1 − ui,j,k−1 − ui−1,j,k−1

4 δz
,

∂xv(xi, yj, zk) ∼
vi+1,j,k + vi+1,j−1,k − vi−1,j,k − vi−1,j−1,k

4 δx
,

∂zv(xi, yj, zk) ∼
vi,j,k+1 + vi,j−1,k+1 − vi,j,k−1 − ui,j−1,k−1

4 δz
,

∂xw(xi, yj, zk) ∼
wi+1,j,k + wi+1,j,k−1 − wi−1,j,k − wi−1,j,k−1

4 δx
,

∂yw(xi, yj, zk) ∼
wi,j+1,k + wi,j+1,k−1 − wi,j−1,k − wi,j−1,k−1

4 δy
.

3.3. Taking into account the boundary conditions on the T-shaped geometry

In this paper, we prescribe a particular geometry which is the shape of
our micro-fluidic junction. As mentioned above, for the sake of simplicity we
discretize the equations on a cartesian grid. In order to take into account the
boundary conditions in the case of junction geometries, a fictitious domain
method is used. The purpose of fictitious domain methods, first introduced
in [21], is to approximate the solutions of partial differential equations posed
on a complex domain by using a non-conformal mesh (in our case cartesian).
In the following, we use the L2 penalty method presented in [2], [23].

�

Figure 8: Schematic view of the three computational domains involved in the fictitious
domain method used in this paper.

In Sections 3.3.1 and 3.3.2, we discriminate three computational domains
(depicted in Figure 8): the ”physical” domain Ω, the ”inlet” domain Ω3

and the ”wall” domain Ωw. We also denote Γt (r.p. Γd,f,b,l,r) the top (r.p.
down, front, back, left, right) boundary of the computational domain, and
Ωc = Ω ∪ Ωw ∪ Ω3 the computational domain itself.
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3.3.1. Momentum equation

Recall the momentum equation and its boundary conditions:

η∆V +∇ ·Σ = ∇P in Ω , (3.30)

∇ · V = 0 ,

V = 0 on Γw , (3.31)

V = V
δP on Γ3 , (3.32)

V = V
δP1,2 , or ∂~nV = 0 on Γ1,2 . (3.33)

Since the borders Γ1,2 match the computational boundaries Γl,r, the condi-
tions (3.33) are set in a standard way. The others boundary conditions (3.31)-
(3.32) are imposed through a penalty term. The modified system to be solved
on the rectangular computational domain writes:

η∆V +∇ ·Σ− 1

ε

(

1Ωw
V + 1Ω3

(V − V
δP )

)

= ∇P in Ωc , (3.34)

∇ · V = 0 ,

V = 0 on Γt,d,b , (3.35)

V = 1Γ3
V

δP on Γf , (3.36)

V = 1Γ1,2
V

δP1,2 , or ∂~nV = 0 on Γl,r , (3.37)

where 0 < ε << 1 and 1B is the characteristic function of the domain B (i.e.
1B(x, y, z) = 1 if (x, y, z) ∈ B and 1B(x, y, z) = 0 elsewhere). It is possible
to show that, as ǫ → 0 the solution of the problem (3.34)- (3.37), restricted
to Ω converges to the solution of (3.30)- (3.31) in H1(Ω) (we refer to [2] [4]
for theoretical work on the subject).

3.3.2. Constitutive equation

Let us recall the first step of the time scheme on the constitutive equation,
with the associated boundary conditions :

(Id− δt∆)Σn+1/2 = Σn − δtV n · ∇Σn in Ω , (3.38)

∂~nΣ
n+1/2 = 0 on Γw . (3.39)

Σn+1/2 = ΣδP on Γ3 , (3.40)

Σn+1/2 = ΣδP1,2 , or ∂~nΣ
n+1/2 = 0 on Γ1,2 , (3.41)
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As above, the boundary conditions (3.41) on Γ1,2 are set in a standard way.
The Neumann condition (3.39) and the Dirichlet condition (3.40) are imposed
through the penalty method :

1Ω∪Ω3
Σn+1/2 − δt∇ · ((1Ω∪Ω3

+ ε1Ωw
)∇Σn+1/2)

+
1

ε
1Ω3

(Σn+1/2 −ΣδP ) = 1Ω∪Ω3
(Σn − δtV n · ∇Σn) in Ω , (3.42)

Σn+1/2 = 1Γ3
ΣδP on Γf , (3.43)

∂~nΣ
n+1/2 = 0 on Γt,d,b , (3.44)

Σn+1/2 = 1Γ1,2
ΣδP1,2 , or ∂~nΣ

n+1/2 = 0 on Γl,r , (3.45)

Again, we refer the reader to [2] [4] for proofs of convergence between (3.38)-
(3.41) and (3.42)- (3.45) as ε → 0.

As many fictitious domain methods, the penalty method usually induce
a loss of accuracy of the numerical scheme. In our case, there is no loss of
accuracy, due to the fact that the mesh is actually conformal to the geometry
of the channel (see Figure 8).

3.4. Stability issues
The numerical scheme in time introduced in Section 3.1 presents an ex-

plicit coupling between the momentum equation (3.21) and the constitutive
equation (3.23). In this section we highlight the fact that this explicit cou-
pling may induce numerical instabilities that disappear if the time step is
chosen small enough. For the sake of simplicity, we study a linear 2D version
of the model (3.21)-(3.23) in its dimensionless form:

α∆V +∇ ·Σ = ∇P + F , (3.46)

∇ · V = 0 , (3.47)

∂tΣ =
(∇V )t +∇V

2
−Σ. (3.48)

For the sake of simplicity the domain is Ω =]0, 2π[×]0, 2π[ and we consider
solutions that are periodic in both directions (x, y). The external force F

ensures a non-zero solution. We first show that, if Σ is a solution of (3.46)-
(3.48), then it grows at most linearly.

Proposition 1. Let (V ,Σ) be a bi-periodic (in space) solution of (3.46)-
(3.48) associated with the initial condition Σ0, then there exists c > 0 such
that :

||Σ||L2 ≤ ||Σ0||L2 + c t . (3.49)
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Proof. For any periodic function f we denote by f̂k,l the Fourier mode defined
by:

f̂k,l =

∫∫

Ω

f(x, y) e−I(kx+ly) dx dy , (3.50)

where I is the imaginary unit (for the sake of simplicity we drop the indexes
k, l from now on). By performing the above Fourier transform on (3.46)-
(3.47), we obtain:

−α (k2 + l2) û+ I k Σ̂xx + I l Σ̂xy = I k P̂ + F̂ x , (3.51)

−α (k2 + l2) v̂ + I k Σ̂xy + I l Σ̂yy = I l P̂ + F̂ y , (3.52)

k û+ l v̂ = 0 . (3.53)

Some elementary algebraic operations lead to the expression of û and v̂ as a
function of Σ̂:

û =
1

α (k2 + l2)2

(

I k l2(Σ̂xx − Σ̂yy) + I l (l2 − k2) Σ̂xy − l2 F̂ x + k l F̂ y
)

,

v̂ =
1

α (k2 + l2)2

(

I k2 l(Σ̂yy − Σ̂xx) + I k (k2 − l2) Σ̂xy − k2 F̂ y + k l F̂ x
)

.

Applying the same procedure on Equation (3.48) we get:

∂tΣ̂ = −Σ̂ +
I
2





2 k û
k v̂ + l û
2 l v̂



 . (3.54)

Knowing û and v̂ we obtain:

∂tΣ̂ = −AΣ̂ +B , (3.55)

where B depends only on F̂ x and F̂ y. The matrix A writes:

A =
1

c







a b −a

b
b2

a
−b

−a −b a






+ Id , (3.56)

where:

a = k2 l2 , (3.57)

b = k l (l2 − k2) , (3.58)

c = (k2 + l2)2 . (3.59)
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The matrix A is symmetric positive definite since, ∀ X = (x, y, z)t 6= 0:

X tAX =
1

αc

(

a x2 +
b2

a
y2 + a z2 + 2 b xy − 2 a xz − 2 b yz

)

+ x2 + y2 + z2 ,

=

(√
ax+

b√
a
y −

√
a z

)2

+ x2 + y2 + z2 > 0 .

The term −AΣ̂ in (3.55) is hence an exponential decay term. The term B
in (3.55) being constant, we expect the growth of |Σ̂| to be at most linear
in time, as for ||Σ̂||l2 and hence ||Σ||L2 (through Parseval’s theorem).

In the following paragraph, we show that this property is conserved in
the numerical scheme introduced in Sections 3.1 and 3.1, provided that the
time step is small enough.

For more simplicity we suppose the discretization steps in space δx and
δy to be the same (denoted h). Let us recall the numerical scheme introduced
in Sections 3.1 and 3.1, in the particular case of the model (3.46)-(3.47) (the
pressure is supposed to be known):

1

h
(un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1 − 4 un

i,j) + (Σxx)ni,j − (Σxx)ni,j

+
1

4

[

(Σxy)ni,j+1 + (Σxy)ni−1,j+1 − (Σxy)ni,j−1 − (Σxy)ni−1,j−1

]

(3.60)

= Pi,j − Pi−1,j + hF x
i,j ,

1

h
(vni+1,j + vni−1,j + vni,j+1 + vni,j−1 − 4 vni,j) + (Σyy)ni,j − (Σyy)ni,j

+
1

4

[

(Σxy)ni+1,j + (Σxy)ni+1,j−1 − (Σxy)ni−1,j − (Σxy)ni−1,j−1

]

(3.61)

= Pi,j − Pi,j−1 + hF y
i,j ,

un
i+1,j − un

i,j + vni,j+1 − vni,j = 0 , (3.62)

Σn+1
i,j = Σn

i,j − δtΣn
i,j + δtDn

i,j . (3.63)

Proposition 2. Assume that :

δt <
32α

1 + 16α
, (3.64)

then the numerical scheme (3.60) (3.63) is stable, i.e there exists c > 0 such
that:

||Σn||l2 ≤ ||Σ0||l2 + c n δt . (3.65)
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Proof. We introduce the following Fourier transform for any discrete periodic
field fi,j

f̂k,l =
N−1
∑

i=0

N−1
∑

j=0

fi,j e
−Ih(ik+jl) . (3.66)

Let

ξ− = 1− e−Ikh , ξ+ = eIkh − 1 , (3.67)

η− = 1− e−Ilh , η− = eIlh − 1 . (3.68)

We have :

ξ+ − ξ− = ξ+ξ− , ξ+(2− ξ−) = ξ+ + ξ− , (3.69)

η+ − η− = η+η− , η+(2− η−) = η+ + η− . (3.70)

The calculation can be performed as in the continuous case. By applying the
Fourier transform (3.66) to the numerical scheme (3.60)-(3.62), we get:

α

h
(ξ+ξ− + η+η−) ûn + ξ−(Σ̂xx)n +

1

4
(η+ + η−)(2− ξ−)(Σ̂xy)n = ξ−P̂ + h F̂ x ,

α

h
(ξ+ξ− + η+η−) v̂n + η−(Σ̂yy)n +

1

4
(ξ+ + ξ−)(2− η−)(Σ̂xy)n = η−P̂ + h F̂ y ,

ξ+ ûn + η+ v̂n = 0 .

We obtain P̂ as in the continuous case :

P̂ =
ξ+ξ−(Σ̂xx)n + η+η−(Σ̂yy)n +

1

2
(ξ+ + ξ−)(η+ + η−)(Σ̂xy)n − h(ξ+ F̂ x + η+ F̂ y)

ξ+ξ− + η+η−
.

(3.71)
Therefore, û and v̂ can be evaluated in terms of Σ̂ and F̂ :

ûn =
h

α(ξ+ξ− + η+η−)2

[

ξ−η+η−((Σ̂yy)n − (Σ̂xx)n)

+
(ξ+ξ− − η+η−)(ξ+ + ξ−)(η+ + η−)

4ξ+
(Σ̂xy)n

]

+ f(F̂ x, F̂ y) , (3.72)

v̂n =
h

α(ξ+ξ− + η+η−)2

[

η−ξ+ξ−((Σ̂xx)n − (Σ̂yy)n)

+
(η+η− − ξ+ξ−)(ξ+ + ξ−)(η+ + η−)

4η+
(Σ̂xy)n

]

+ g(F̂ x, F̂ y) , (3.73)
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where f and g are terms that depend only on F̂ (not developed here).
Following Sections 3.1 and 3.2, the discretization of the evolution equa-

tion (3.48) reads:
Σn+1

i,j = Σn
i,j − δtΣn

i,j + δtDn
i,j , (3.74)

where Dn
i,j is given by

Dn
i,j =

1

h











un
i+1,j − un

i,j
1

4

(

un
i+1,j+1 − un

i+1,j−1 + un
i,j+1 − un

i,j−1

+vni+1,j+1 − vni−1,j+1 + vni+1,j − vni−1,j

)

vni,j+1 − vni,j











. (3.75)

We then apply the discrete Fourier transform on the discretized evolution
equation (3.77) to obtain:

Σ̂n+1
i,j = Σ̂n

i,j−δtΣ̂n
i,j+

δt

h







ξ+ûn

1

4
[(η+ + η−)(ξ+ + 1)ûn + (ξ+ + ξ−)(η+ + 1)v̂n]

η+v̂n






.

(3.76)
Recalling that ûn and v̂n depends on Σ̂n (see Equations (3.72) and (3.73)),
then (3.78) can be rewritten under the form

Σ̂n+1
i,j = Σ̂n

i,j − δtAΣ̂n
i,j +B , (3.77)

where B is a constant term depending only on F̂ , and the matrix A writes

A =
1

α c







a b −a

b
b2

a
−b

−a −b a






+ Id , (3.78)

with

a = ξ+ξ−η+η− = 4(cos(kh) + 1)(cos(lh) + 1) ,

b =
1

4
(η+η− − ξ+ξ−)(ξ+ + ξ−)(η+ + η−)

= (cos(kh)− cos(lh))sin(kh)sin(lh) ,

c = (ξ+ξ− + η+η−)2 = 4(cos(kh) + cos(lh) + 2)2 .
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The matrix A has exactly the same structure as the one used in the proof
of Proposition 1. Hence A is symmetric positive definite. Moreover, simple
linear combinations show that the eigenvectors of A are :





1
0
1



 ,





b
−a
0



 ,





a
b
−a



 ,

associated repectively with the eigenvalues

1 , 1 ,
b2

α a c
+ 1 .

In order to deal with linear growth of |Σ̂| in the numerical scheme (3.77),
the time step δt has to be small enough to ensure stability. Typically, this
condition reads

δt <
2

ρ(A)
, (3.79)

where ρ(A) is the spectral radius of A. Since a > 0 and c > 0, we have:

ρ(A) =
b2

α a c
+ 1 . (3.80)

Moreover, one can compute

b2

a c
≤ (cos(kh)− cos(lh))2sin2(kh)sin2(lh)

16(cos(kh) + 1)(cos(lh) + 1)(cos(kh) + cos(lh) + 2)2

=
(cos(kh)− cos(lh))2(1− cos(kh))(1− cos(lh))

16(cos(kh) + cos(lh) + 2)2

≤ (1− cos(kh))(1− cos(lh))

4(cos(kh) + cos(lh) + 2)2

≤ 1

16
,

which furnishes

ρ(A) ≤ 1

16α
+ 1 . (3.81)

Then a sufficient condition for stability reads

δt <
32α

1 + 16α
. (3.82)
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Condition (3.82) may not be too restrictive since the values of α are
never too small in our simulations. Indeed, the CFL condition for the trans-
port part of the full model (2.12) is usually more restrictive than the condi-
tion (3.82). The above calculation shows that the numerical scheme described
in Sections 3.1 and 3.2 is not appropriate for models such as the upper con-
vected Maxwell model, for which α has to be taken small (as a regularization
parameter).

4. Numerical Results

In the following section we present the different numerical results obtained
on the model (2.12) with the numerical method described in Section 3. We
focused on the following rheological parameters:

η = 1Pa.s ,

G = 150Pa ,

τ = 0.5 s ,

a = 0.9 ,

κ = 0.3 .

Such a choice of parameters ensures the non-monotonicity of the flow curve
Txz(γ̇) as well as a reasonable growth of the extensional viscosity ηe(ε̇) =
Σxx

ε̇
. In what follows, the cross sections of the channels are squares of size

1mm×1mm and we let vary the other characteristic lengths of the junction
(L1, L2 and L3). The spatial steps are chosen as follows:

δx = δy = δz = 2 · 10−4m,

which corresponds to a resolution of 50× 50 for the cross-section.

4.1. Choice of the model

In this section, the choice of the non-linear model given in Section 2.1.2
is discussed. In Section 2.1.1 we claimed that the linear model exhibits some
non-physical behavior in the case of a constant extensional strain. From now
on, instead of studying a one way coupling (constant given strain ε̇) as in
Section 2.1.1, we let the whole system (2.12) evolves in a two-way coupling
between the momentum equation and the constitutive equation upon Σ.
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4.1.1. A strong extensional case

Let us consider the particular case of a geometry that should induce a
strong extensional strain: a six-branched cross junction in which the fluid is
injected through four boundaries and exits through two boundaries (see Fig-
ure 9). The inlet and outlet boundary conditions used here are the Dirichlet
boundary conditions described in Section 2.2. By using the Poiseuille-like
model we compute the inlet and outlet velocity and extra-stress profile.

y
x

z

Figure 9: Schematic view of the 6-ways cross-slot domain.

The main interest of such a test case is that it presents a stopping point
(V = 0) exactly in the middle of the junction. At this point the strain should
be a pure extensional strain. In all what follows we refer to the case κ = 0
as being the ”linear model” while κ = 0.3 is called the ”non-linear” one. We
would like to emphasize that even in the case κ = 0 the complete system is
still non-linear. In the same way as in Section 2.1.2 we compare the results
given by the linear model (κ = 0) and the non-linear model (κ = 0.3).
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a) b)

Figure 10: Streamlines resulting from numerical simulations on the model (2.12) in the
particular case depicted in Figure 9. Both snapshots are taken at the same time, when
some instability is observed on the linear model. On a): the linear model. On b): the
non-linear model.

By starting up with the same initial condition Σ = 0 for both models,
we let the system evolves until some instability is observed. As seen on
Figure 10, after some time, the two models behave in a different way: the
non-linear model (Figure 10b) exhibits a stable steady state, whereas, for
the non-linear model (Figure 10a), the stress grows constantly, leading to a
non-physical behavior (energy created from the constitutive equation). As a
consequence, it seems necessary to use the non-linear model in this case.

As stated before, the symmetry in this case allows a stopping point where
the extra-stress accumulates in the linear case. In the case of an asymmetric
T-junction, the situation is a bit more complex and the position of the stop
point is less trivial. In the next section, we perform the same tests in the
case of an asymmetric junction.

4.1.2. The asymmetric T-shaped junction

In this section we consider the geometry presented in Figure 11. Following
Section 4.1.1 our aim is to compare the behaviors of the linear (κ = 0) and
the non-linear (κ = 0.3) model. The characteristic lengths of the junction
are L1 = 1mm, L2 = 2mm, L3 = 1mm.
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Figure 11: Schematic view of the geometry of a T-shaped junction.

On Figure 12, we observe that after some evolution, the linear model
breaks down, as predicted in Section 4.1.1. This result illustrates the neces-
sity to use a non-linear model in order to have a realistic description of the
extensional flows we wish to study. Now that we are confident in the validity
of our model, so we focus on the case of interest.

a) b)

Figure 12: Streamlines resulting from numerical simulations on the model (2.12) in the
particular case depicted in Figure 11. Both snapshots are taken at the same time, when
some instability is observed on the linear model. On a): the linear model. On b): the
non-linear model.

4.2. Flows in an strongly asymmetrical junction :
L2

L1
= 2

Results concerning the flow of wormlike micelles in a strongly asymmetri-
cal micro-fluidic junction are presented in this section. First, we attempt to
explain the jamming phenomenon depicted in Section 1 by using arguments
that involve mainly the so-called ”spurt effect” (i.e. sudden rise in the flow
rate through a pipe above a critical pressure drop) which is only related to
the behavior of the fluid under a shear strain. Tridimensional numerical sim-
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ulations on the full model (2.12) show that the reduced model approach is
not entirely satisfactory.

In what follows, we denote by Qi the flow rates and δPi the pressure drops
through the boundaries Γi where i = 1, 2, 3. The flow rate is defined by:

Qi =

∫

Γi

V · ~n dΓi . (4.83)

Q3 and δP3 (inlet) are the input data, whereas (Q1, Q2) and (δP1, δP2) (out-
lets) are the outputs of the model.

4.2.1. Predictions through reduced model approach

In a first attempt to predict the outlet flow rates (Q1, Q2) for a given inlet
Q3, we chose to consider the junction as a simple hydraulic network. In such
a network, the pressure can be considered linear for each branch:

δP1 =
P1 − P0

L1
, (4.84)

δP2 =
P2 − P0

L2
, (4.85)

where P1 (r.p. P2) represents the pressure at the outlet Γ1 (resp. Γ2). These
pressures are supposed to be the same (P1 = P2 = 0), since we consider out-
lets at the atmospheric pressure. The pressure P0 represents an intermediate
pressure, which has to be determined.

The flow rates Q1, Q2 and Q3 must satisfy the following incompressibility
condition: Q3 = Q1 + Q2. In order to close this model, a relation between
the pressure drop and the flow rate must be given.

Usually, a flow rate Q can be linked with a pressure drop δP through
a linear relation that can be derived from the Darcy’s law. While this law
holds in the newtonian case, it is inappropriate for the study of shear-banding
fluids such as the Johnson-Segalman’s fluid. The Poiseuille-like model 2.16
introduced in Section 2.1.3 allows us to compute the velocity profile of a
Johnson-Segalman’s fluid through a given section (see Figure 13a) and for
a given pressure drop. The equation (4.83) gives us the corresponding flow
rate. The Figure 13b presents the relation between Q and δP . We notice
that, above a certain value of δP , a sudden augmentation in the flow rate
occurs.

32



a)
0 0.2 0.4 0.6 0.8

0

0.005

0.01

0.015

0.02

Y (mm)

V
x (

m
 / 

s)

 

 

 5e05 Pa / m
 5.83e05 Pa / m
 8.33e05 Pa / m
10e05 Pa / m

b)
10

6

10
0

10
1

Pressure Drop (Pa / m)

Q
 (

µL
 / 

s)

Figure 13: Application of the Poiseuille-like model (2.16). On a): Cut of the velocity
profile in the middle of the section, computed for various values of δP . On b): Non-linear
relation Q(δP ) obtained for our fluid.

As mentioned above, the aim is to find the intermediate pressure P0 such
that Q3 = Q1 + Q2. For that purpose, we introduce the following iterative
algorithm:

0. Initialize P 0
0

1. P n is known ,

2. Get the pressure drops δP n
1 , δP

n
2 , from (4.84)-(4.85),

3. Get the flow rates Qn
1 , Q

n
2 , from the relation Q(δP ) established previ-

ously (Figure 13),

4. Update P0 with: P n+1
0 = P n + δr

Qn
3 − (Qn

1 +Qn
2 )

max(Qn
1 , Q

n
2 +Qn

3 )
,

5. Go to 1.

The step δr is taken small enough to ensure stability. We perform the above
algorithm for various values of Q3, and show the results in Figure 15.
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Figure 14: Ratio between the oulet flow rates Q1/Q2 as a function of the inlet flow rate
Q3 after convergence of the algorithm described above. Dashed line : theoretical result of
a Newtonian fluid.

The Figure 15 shows that for some values of the inlet flow rate Q3, the ra-
tio Q1/Q2 can rise up to 30 (i.e. 30 as much fluid exits though Γ1 as though
Γ2). This phenomenon is strongly related to the ”spurt effect” shown in Fig-
ure 13. This study explains partly the jamming observed in the experiments
of flows in micro-fluidic T-shaped junctions.

Let us investigate the validity of the reduced model approach. In this
matter, we perform a 3D numerical simulation upon the (2.12). For these
simulations, the outlet flow rates (Q1, Q2) are set as predicted through the
above approach for a given value of the inlet flow rate Q3 = 56.4µL.s−1.

From Figure 15 we notice that the pressure is not the same at each outlet
boundary Γ1 and Γ2 as it is supposed in the construction of the reduced
model. This contradiction might be related to the fact that the redistribution
of the flow at the center of the junction is more complex here than in the
newtonian case.

The method described in this section doesn’t take into account the non-
trivial physical process that appears in a flow of wormlike micelles through a
junction. It is hence necessary to perform 3D numerical simulations upon the
full model (2.12) with the free flow outlet conditions (2.17)-(2.18) in order
to be predictive in this case.
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Figure 15: Numerical simulation performed upon the model (2.12) with Dirichlet boundary
condition determined by using the reduced model approach. Mesh resolution : 100×200×
50. Inlet flow rate Q3 = 56.4µL.s−1. On a): velocity field and streamlines taken from a
cut at z = h/2. On b): cut at z = h/2 of the pressure field.

4.2.2. Direct numerical simulations

In this section we perform 3D numerical simulations on Equations (2.12).
Instead of setting the velocity and stress profile at the outlet, we rather use
the Neumann boundary condition (2.17)-(2.18), that stands for a free flow
boundary condition. At the inlet, we use Dirichlet boundary conditions by
setting a velocity profile computed with (2.16). As a consequence, the inlet
flow rate Q3 is prescribed.

The Figure 16 shows the results of the simulations taken at steady state
for various inlet flow rates Q3. First, we notice on Figure 16 (on b, d, f) that,
unlike previously (Figure 15), the pressure level at each outlet boundary Γ1,2

is qualitatively the same. On Figure 16 (on a,c,e) we notice that the flow
rate is much more important in the shortest branch than in the longest one
which appears completely jammed.
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Figure 16: Numerical simulations performed upon the model (2.12), with the free boundary
conditions (2.17)-(2.18). Mesh resolution: 100 × 200 × 50. From top to bottom: Q3 =
[25.28, 49.66, 72.04]µL.s−1. On a), c), e): velocity field and streamlines taken from a
cut at z = h/2. On b), d), f): cut at z = h/2 of the pressure field. On g), 3D view of
the streamlines computed from the velocities obtained in the most jammed case (a),b)) ;
in red: streamlines exiting through Γ2, in blue: streamlines exiting through Γ1.
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Figure 17: Ratio between the outlet flow rates Q1/Q2 as a function of the inlet flow rate
Q3. Isolated squares: results computed from the direct simulations performed upon the
full model (2.12). Squares and lines: results given by the reduced model. Dashed line:
theoretical results for a newtonian fluid.

Let us now compare the outlet flow rate distribution given by the di-
rect simulations with the results given is Section 4.2.1. We performed six
numerical simulations on (2.12) for the following range of inlet flow rates:
Q3 ∈ [25.28 ; 293.54]µL.s−1. In each case, we let the system reached a
steady-state. On Figure 17, the results given by direct numerical simulations
are rather different from the predictions performed in Section 4.2.1. The
numerical simulations (red dots) give outlet flow rates ratios Q1/Q2 that are
in general higher than those predicted previously (blue dots). This difference
might be due to some extensional effects of the flow of wormlike micelles at
the middle of the junction.

In conclusion, we have seen that most of the time, the longest exit branch
of the junction appears much more ”jammed” here than when dealing with
Newtonian fluid. Moreover, simple arguments are not sufficient to explain
this fact completely, and 3D numerical simulation on the full model seems
necessary. All these results can be seen as a first step for the study of wormlike
micelles flows in porous media. Indeed, as stated in the introduction, porous
media can be seen as a very inhomogeneous network of micro-channels. In
this matter, we investigate in the next section the role of the asymmetry of
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a junction.

4.3. Flows in an weakly asymmetric junction :
L2

L1
∼ 1

Let us consider a similar geometry as described on Figure 11. We now
prescribe different lengths for the exit branches of the junction: we set L1 =
1mm and L2 such that:

L2 = L1 (1 + ε) .

Here ε < 1 is a dimensionless parameter that sets the asymmetry of the micro-
fluidic junction. In the same way as before we prescribe the inlet velocity by
using the Poiseuille-like model (2.16) and we use the Neumann boundary con-
dition (2.17)-(2.18) at the outlet. The inlet flow rate is: Q3 = 25.28µL.s−1.
Again, by performing numerical simulations upon the model for different
values of the asymmetry parameter ε = [0.025, 0.05, 0.1, 0.2, 0.3] one can
determine the influence of this asymmetry upon the outlet flow rate distri-
bution.

The Figure 18 shows that the flow rate asymmetry is very sensitive to the
channel asymmetry. For instance, even if we consider a very small asymmetry
junction (that is ε = 0.025), the flow rate in the shortest branch Q1 is 1.5 as
big as the flow rate in the longest branch Q2 (see Figure 19, a) and b).
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Figure 18: Ratio between the outlet flow rates Q1/Q2 as a function of the asymmetry ε of
the exit branches. Squares: result given by performing direct numerical simulations upon
the model (2.12) with free flow boundary conditions. Dashed line: theoretical result for a
newtonian fluid.

As a consequence, if we consider the flow of a wormlike micellar solution
in a micro-fluidic network that allows some small heterogeneity, a preferential
path will be chosen by the fluid. In the case of a porous media, where the
heterogeneity of the geometry is rather important, the choice of a preferen-
tial path should be even more important. This could be a problem for the
use of wormlike micelles in enhanced oil recovery. The fact that an impor-
tant fraction of the porous media containing the oil remains jammed could
reduce the expected enhanced recovery rate. Moreover, the locations of the
main/jammed paths should be difficult to predict since we have no control
upon the microscopic heterogeneity.

5. Conclusion

A complete framework for 3D numerical simulations of non-newtonian
fluids has been described in this paper. The particular case of flows through
junctions was investigated. A modified version of the well known Johnson-
Segalman’s model has been used as a constitutive equation, as described
in Section 2.1. This modified model ensures the normal stress to remain
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Figure 19: Numerical simulations performed upon the model (2.12), with the free boundary
conditions (2.17)-(2.18). Mesh resolution: 100 × 200 × 50. From top to bottom: ε =
[0.025, 0.1, 0.2, 0.3]. On a), c), e): velocity field and streamlines taken from a cut at
z = h/2. On b), d), f): cut at z = h/2 of the pressure field.
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bounded in the situation of extensional flows. This problem happens often
when dealing with pipe flows in junctions, as confirmed in Section 4.1.

Some issues concerning the inflow/outflow conditions have been widely
studied here. Because of the very particular velocity profiles that appear
when dealing with the Johnson-Segalman’s model (see fig. 6), simple Poiseuille
profiles based on newtonian rheology for inlet cannot be satisfactory here.
In Section 2.1.3, we derived a non-newtonian Poiseuille-like model from the
model described in 2.1. The stationary numerical solution of this Poiseuille-
like model have been used as inlet conditions in latter simulations. Among
other advantages, this novel inlet condition allows us to reduce the length of
the inlet channel, usually needed to get an established flow at the junction.

Numerical simulations have been performed in a tree dimensional context
in section 4. These simulations have shown the jamming effect, which is a
purely non-newtonian phenomenon, triggered by the geometry of the junc-
tion. Comparisons with a reduced hydraulic model have shown that full 3D
simulations are necessary here.

Some improvements, in particular concerning the numerical scheme de-
scribed in Section 3 may be conducted in the future, allowing the use of
models for which the so-called ”solvent viscosity” η is small, which is forbid-
den here (see Section 3.4).
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