feuille complémentaire 1

EXERCICE 1. Soit $f(X) = X^4 + aX^3 + bX^2 + cX + d$ un polynôme à coéfficients entiers. i) Montrer que si

$$f(X) = (X^2 + \lambda X + m)(X^2 + \mu X + n),$$

alors on a $\lambda + \mu = a$ et $n\lambda + m\mu = c$.

ii) Supposons que $c^2 \neq a^2d$ et que f(X) n'a pas de racines rationnelles. Montrer que f(X) est irréductible sur $\mathbb Q$ si et seulement si il n'a pas de diviseurs de la forme

$$X^{2} + \frac{cm - am^{2}}{d - m^{2}}X + m$$
,

où m parcourt les diviseurs de d.

EXERCICE 2. Soit \mathbb{K} un corps et soit A l'ensemble des polynômes P de $\mathbb{K}[t]$ tel que $P(t) = \sum_{i=0}^{n} a_i t^i$ avec $a_1 = 0$.

- 1) Montrer que A est un sous-anneau de $\mathbb{K}[t]$.
- 2) Montrer que t^2 est irréductible dans A.
- 3)Soit ϕ l'unique morphisme d'anneaux de $\mathbb{K}[X,Y]$ dans $\mathbb{K}[t]$ tel que:

$$\forall a \in \mathbb{K}, \phi(a) = a, \phi(X) = t^2, \text{ et } \phi(Y) = t^3.$$

Montrer que l'image de ϕ est A. Montrer que le noyau de ϕ est l'idéal $< Y^2 - X^3 >$. En déduire que A est isomorphe à l'anneau quotient $A' = \mathbb{K}[X,Y]/\langle Y^2 - X^3 \rangle$.

- 4) Notons x la classe de X dans $A' = \mathbb{K}[X,Y]/\langle Y^2 X^3 \rangle$. Justifier que x est irréductible dans A'.
- 5) Montrer que $A'/\langle x \rangle$ est isomorphe à $\mathbb{K}[Y]/\langle Y^2 \rangle$. En déduire que $\langle x \rangle$ n'est pas premier dans A'.
- 6) En déduire que A et A' ne sont pas factoriels. Donner un élément de A' qui se décompose de deux manières distinctes en un produit d'irréductibles.

EXERCICE 3.

- 1) Montrer que l'anneau $\mathbb{R}[X,Y]/(X^2+Y^2+1)$ est intègre. 2) Les anneaux $\mathbb{Q}[X]/(14X^{10}-21)$ et $\mathbb{Z}[X]/(14X^{10}-21)$ sont-ils intègres?
- 3) Le polynôme $X^8 + Y^7 + 1$ est-il un irréductible de $\mathbb{R}[X,Y]$, $\mathbb{Q}[X,Y]$, $\mathbb{Z}[X,Y]$?
- 4) Le polynôme $W^2 W T$ est-il un irréductible de $\mathbb{F}_5[W,T]$? Même question pour $W^2 - T^3$ et $W^3 - T^3$?
- 5) Les anneaux $\mathbb{Z}[X]/< X^4 + 12X^3 + 18X + 24 > \text{et } \mathbb{Z}[X]/< X^4 17X^3 + 6X^2 + 18X + 24 > \text{et } \mathbb{Z}[X]/< X^4 17X^3 + 18X + 18X + 24 > \text{et } \mathbb{Z}[X]/< X^4 17X^3 + 18X +$ 20X + 1 >sont-ils intègres?

EXERCICE 4.

- 1) L'idéal $< 2, X^2 + X + 1 >$ est-il premier dans $\mathbb{Z}[X]$? maximal dans $\mathbb{Z}[X]$? 2) L'idéal $< 4, X^2 + X + 1 >$ est-il premier dans $\mathbb{Z}[X]$? premier dans $\mathbb{Q}[X]$?

EXERCICE 5. On note *I* le noyau du morphisme $\phi : \mathbb{Z}[X,Y] \to \mathbb{Z}[T]$ défini par:

$$a \in \mathbb{Z} \mapsto a, X \mapsto T + 1, Y \mapsto 2T.$$

- 1) Est-ce que *I* est un idéal premier? maximal?
- 2) Montrer que *I* contient un élément qui est à la fois de degré 1 en *X* et en *Y*.
- 3) Est-ce que *I* est un idéal principal?

EXERCICE 6. Soit $A = \mathbb{Q}[X,Y]/(XY-1)$. 1) Montrer que A est isomorphe à $\mathbb{Q}[X,X^{-1}]$.

- 2) Montrer que A est principal. (Indication: soit I un idéal de A. Étudier $I_0 =$ $I \cap \mathbb{Q}[X]$.)