Composition: Calcul différentiel

Exercice 1. Soit

$$f(x) = \sum_{n>1} \frac{\sin(2^n x)}{2^n}.$$

- 1) Montrer que f est bien définie et continue sur \mathbb{R} .
- 2) Montrer que pour $0 \le x \le \frac{\pi}{2}$, $\sin x \ge \frac{2}{\pi}x$.
- 3) Montrer que f n'est pas dérivable en 0.

Indication: On pourra poser $x_N = \frac{\pi}{2^N}$ et estimer $f(x_N)$.

Exercice 2. Soit $g: \mathbb{R}^n \longrightarrow \mathbb{R}$. On rappelle que g est convexe sur \mathbb{R}^n si pour tout $x, y \in \mathbb{R}^n$ et tout $\lambda \in [0, 1]$, on a

$$g((1 - \lambda)x + \lambda y) \le (1 - \lambda)g(x) + \lambda g(y).$$

1) On suppose g différentiable sur \mathbb{R}^n , montrer que si g est convexe alors pour tout $x, y \in \mathbb{R}^n$, on a

$$g(y) \ge g(x) + Dg_{(x)}(y - x).$$

(Remarque: la réciproque est vraie (bonus).)

- 2) En déduire que tout minimum local de g est global.
- **Exercice 3.** On considère $E = M_n(\mathbb{R})$ et l'application det : $M_n(\mathbb{R}) \to \mathbb{R}$.

On rappelle que le déterminant est une fonction polynomiale en les coefficients de la matrice.

1) Pour $1 \leq i, j \leq n$ où $t \in \mathbb{R}$ on note $E_{i,j}$ la matrice élémentaire n'ayant que des 0 sauf un 1 à la place (i,j).

Calculer $\det(Id + tE_{i,j})$. En déduire l'existence des dérivées dans les directions $E_{i,j}$ de la fonction determinant en l'identité.

2) En déduire que pour $H \in M_n(\mathbb{R})$

$$D\det_{Id}(H) = \operatorname{trace}(H).$$

3) Soit X une matrice inversible en déduire que pour $H \in M_n(\mathbb{R})$

$$D\det_X(H) = \operatorname{trace}(\det(X)X^{-1}H).$$

Exercice 4.

Soit Ω un ouvert borné de \mathbb{R}^d . On note $\bar{\Omega}$ sa fermeture et $\partial \Omega = \bar{\Omega} - \Omega$. On considère le Laplacien $\Delta = \sum_{i=1}^d \frac{\partial^2}{\partial x_i^2}$.

Soit f une fonction de classe $C^2(\bar{\Omega}, \mathbb{R})$.

- 1) Montrer que f atteint son maximum.
- 2) On suppose que pour tout $x \in \Omega$, $\Delta f(x) > 0$. Montrer que f ne peut pas atteindre son maximum en un point $x_0 \in \Omega$.
- 3) On suppose maintenant que pour tout $x \in \Omega$, $\Delta f(x) \geq 0$. Montrer que

$$\sup_{x \in \Omega} f(x) \le \max_{x \in \partial \Omega} f(x).$$

On pourra considérer $f_{\varepsilon}(x) = f(x) + \varepsilon ||x||^2$ avec $\varepsilon > 0$.

Exercice 5. Soient $a, b \in \mathbb{R}$ fixés, a < b. Pour $\varepsilon > 0$, on pose

$$P_{\varepsilon}(x) = (x-a)(x-b) + \varepsilon x^{3}$$
.

- 1) Montrer que si ε est assez petit, alors P_{ε} admet 3 racines réelles distinctes $x_1(\varepsilon) < x_2(\varepsilon) < x_3(\varepsilon)$.
 - 2) Montrer que

$$x_1(\varepsilon) + x_2(\varepsilon) + x_3(\varepsilon) = -\frac{1}{\varepsilon}.$$

3) Pour i=1,2,3, déterminer un développement asymptotique de $x_i(\varepsilon)$ de la forme $x_i(\varepsilon)=\frac{\alpha_i}{\varepsilon}+\beta_i+\gamma_i\varepsilon+o(\varepsilon)$ quand ε tend vers 0.

Indication: On pourra utiliser le théorème des fonctions implicites.