Composition

19 septembre 2016 durée 2h

Exercice 1. Soit $\alpha > 0$. Soit $(u_n)_{n \ge 1}$ une suite de nombres complexes telle que

$$|u_{n+1} - u_n| \le \frac{1}{n^{\alpha}}, \ n \ge 1.$$

Que peut-on dire de la convergence de la suite $(u_n)_n$ en fonction de α ? Justifier.

Exercice 2. On considère la série

$$\sum_{n\geq 1} \ln \left(1 + \frac{(-1)^n}{\sqrt{n}}\right).$$

- 1) La série converge-t-elle absolument?
- 2) La série est-elle convergente? (On pourra faire un développement limité.)

Exercice 3. 1) Soit z un complexe tel que Re(z)>1 et (a_n) une suite bornée. Montrer que $\sum_{n\geq 1}\frac{a_n}{n^z}$ converge.

2) On a vu en cours que si $Re(z) = 1, z = 1 + i\theta, \ \theta \in \mathbb{R}, \ \sum_{n \geq 1} \frac{1}{n^{1+i\theta}}$ diverge. Montrer cependant que, pour $\theta \neq 0$ et tout $N \geq 2$,

$$\left| \sum_{n=2}^{N} \frac{1}{n^{1+i\theta}} \right| \le \frac{2}{\theta} + (1+|\theta|).$$

On pourra commencer par établir que, avec $\{t\}=t-[t]$ la partie décimale de t,

$$\sum_{n=2}^{N} \frac{1}{n^{1+i\theta}} = \int_{1}^{N} \frac{1}{t^{1+i\theta}} dt - \int_{1}^{N} \{t\} \frac{1+i\theta}{t^{2+i\theta}} dt.$$

3) Soit $(a_n)_n$ une suite décroissante vers 0. En déduire que $\sum_{n\geq 1} \frac{a_n}{n^{1+i\theta}}$ converge.

Exercice 4. A) (suites sous additives)

Soit $(u_n)_{n>0}$ une suite de réels tels que:

$$u_{m+n} \le u_m + u_n.$$

1) Soit $a \in \mathbb{N}^*$ et $n \ge a$. Montrer que

$$\frac{u_n}{n} \le \frac{u_a}{a} + \frac{1}{n} \max\{u_0, u_1, \dots, u_{a-1}\}.$$

(Indication: On poura faire une division euclidienne.)

- 2) En déduire que $\limsup_n \frac{u_n}{n} \leq \inf_a \frac{u_a}{a}$ puis que $\lim_{n \to +\infty} \frac{u_n}{n}$ existe et appartient à $[-\infty, \infty[$.
 - 3) On suppose maintenant seulement qu'il existe $M \geq 0$ tel que:

$$u_{m+n} \le u_m + u_n + M$$
, pour tout $m, n \ge 0$.

Montrer que $\lim_{n\to+\infty}\frac{u_n}{n}$ existe et appartient à $[-\infty,\infty[$. (*Indication*: On poura considérer $v_n=u_n+M$.)

B) (**nombre de rotation**) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction croissante telle que pour tout $x \in \mathbb{R}$,

$$f(x+1) = f(x) + 1.$$

Le but de l'exercice est de montrer que pour tout $x \in \mathbb{R}$, la suite $\frac{f^{(n)}(x)}{n}$ converge et que la limite est indépendante de x, (ici $f^{(n)}$ désigne la composée n-ème de f).

1) Pour $n \ge 0$, on pose $u_n = f^{(n)}(0)$. Soit $m, n \in N$ et soit k la partie entière de $f^{(n)}(0)$. Montrer que

$$f^{(m)}(0) + k \le f^{(m+n)}(0) \le f^{(m)}(0) + k + 1.$$

En déduire que

$$-1 \le u_{n+m} - u_n - u_m \le 1;$$

puis que la suite $\left(\frac{f^{(n)}(0)}{n}\right)_n$ converge.

- 2) Soit $x \ge 0$, conclure en remarquant que $0 \le x \le k'$ avec $k' \in \mathbb{N}$.
- C) (**Bonus: un peu de probas**) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi. Soit $a\in\mathbb{R}$. Pour $n\geq 1$, on pose $u_n=\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^n X_i\geq a\right)$.

Montrer que $(u_n)_n$ est sur-multiplicative; i.e $u_{n+m} \geq u_n u_m$, pour tout $n, m \geq 1$.

En déduire que

$$I(a) = -\lim_{n \to \infty} \frac{1}{n} \ln \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_i \ge a\right)$$

existe et appartient à $[0, +\infty]$.