Composition 1

7 septembre 2015 durée 2h

Exercice 1. Soit

$$f(x) = \sum_{n>1} \frac{\sin(2^n x)}{2^n}.$$

- 1) Montrer que f est bien définie et continue sur \mathbb{R} .
- 2) Montrer que pour $0 \le x \le \frac{\pi}{2}$, $\sin x \ge \frac{2}{\pi}x$.
- 3) Montrer que f n'est pas dérivable en 0.

Indication: On pourra poser $x_N = \frac{\pi}{2^N}$ et estimer $f(x_N)$.

Exercice 2. Soit $(u_n)_n \geq 1$ une suite de termes positifs telle que

$$\sum_{n>1} u_n = +\infty.$$

On pose $S_n = \sum_{k=1}^n u_k$, $n \ge 1$ et $S_0 = 0$.

On considère $\alpha > 0$ et on s'intéresse à la convergence de la série $\sum \frac{u_n}{S_n^{\alpha}}$.

1) Soit $n \ge 1$. Montrer que

$$\frac{u_n}{S_n^{\alpha}} \le \int_{S_{n-1}}^{S_n} \frac{1}{t^{\alpha}} dt.$$

Conclure dans le cas $\alpha > 1$.

2) Montrer que

$$\sum_{k=p+1}^{q} \frac{u_k}{S_k} \ge 1 - \frac{S_p}{S_q}.$$

Conclure pour le cas $\alpha = 1$ puis $0 < \alpha < 1$.

Exercice 3. Soit $x \in [0, \frac{\pi}{2}]$. Soit $v_n := v_n(x)$ la suite définie par $v_0 = x$ et $v_{n+1} = \sin(v_n), n \ge 1$.

- 1) Montrer que la suite v_n est décroissante et positive. Calculer sa limite.
- 2) Montrer que pour $\alpha \in \mathbb{R}$, quand $n \to +\infty$

$$v_{n+1}^{\alpha} - v_n^{\alpha} \sim -\frac{\alpha}{6}v_n^{\alpha+2}.$$

- 3) En déduire que $v_n^{-2} \sim \frac{n}{3}$. 4) Que peut-on dire de la série $\sum_n v_n$?
- 5) Montrer que la série $\sum (-1)^n v_n(x)$ converge uniformément sur $[0, \frac{\pi}{2}]$.

Exercice 4. Soit (a_n) une suite de nombres complexes admettant une limite $l \in \mathbb{C}$.

1) Quel est le rayon de convergence de la série entière $\sum \frac{a_n}{n!} z^n$?

2) Déterminer $\lim_{x \to +\infty} e^{-x} \sum_{0}^{\infty} \frac{a_n}{n!} x^n$.