Composition: Equations différentielles

 $\begin{array}{c} 19 \text{ octobre } 2016 \\ \text{dur\'ee } 2\text{h} \end{array}$

Exercice 1. Soit $q: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue telle que $\int_0^\infty |q(t)| dt < \infty$. On note (E) l'équation différentielle x'' + q(t)x = 0.

1) On suppose que $\varphi : \mathbb{R}^+ \to \mathbb{R}$ est une solution bornée de (E). Montrer qu'il existe M > 0 tel que pour $t_0 \le t_1 \le t_2$,

$$|\varphi'(t_2) - \varphi'(t_1)| \le M \int_{t_0}^{+\infty} |q(s)| ds.$$

En déduire que $\lim_{t\to\infty} \varphi'(t) = 0$.

2) Montrer que si φ_1 et φ_2 sont deux solutions de (E), alors leur Wronskien

$$w(t) := \varphi_1(t)\varphi_2'(t) - \varphi_2(t)\varphi_1'(t)$$

est constant.

3) Montrer que (E) possède des solutions non bornées.

Exercice 2. On considère l'équation différentielle de Riccati sur $[0, +\infty)$ $(E): y'(t) = y^2(t) + \alpha(t)$ où α est une fonction continue de $[0, +\infty)$ dans \mathbb{R}

On suppose que z_0 est une solution définie globalement sur $[0, +\infty)$ et qu'elle est positive: $z_0(t) > 0$, pour $t \ge 0$.

On note $a=z_0(0)$.

- 1) Soit b > a et soit z_1 la solution maximale de (E) telle que $z_1(0) = b$. Elle est définie sur un intervalle $[0, \beta[$. Justifier que pout tout $t \in [0, \beta[$, $z_1(t) \ge z_0(t)$.
- 2) On note $u=z_1-z_0$, montrer que $u'(t)\geq u^2(t)$. En déduire que la solution maximale z_1 n'est pas globale.
- 3) Soit 0 < c < a et soit z_2 la solution maximale de (E) telle que $z_2(0) = c$. Montrer que z_2 s'annule.

Exercice 3. On note (E) l'équation différentielle $y'' + y^3 = 0$.

- 1) Soit y une solution maximale de E. Justifier que $(y')^2 + \frac{y^4}{2}$ est constant. On rappelle que les solutions maximales de (E) sont globales, bornées et que leurs zéros sont isolés.
- 2) Montrer par l'absurde que y ne possède pas de plus grand zéro. (On pourra supposer y(t)>0 pour tout $t\geq t_0$ et commencer par montrer

qu'alors y'(t) converge vers 0 en $+\infty$ et que y(t) converge vers une limite positive.)

- 3) En déduire que la solution maximale y est périodique. (On pourra utiliser le théorème de Cauchy-Lipschitz).
- 4) On considère maintenant la solution maximale telle que $y(0)=y_0>0$ et y'(0) = 0. On pose F la fonction paire $F(x) = \frac{x^4}{2}$.
 - a) Montrer que $|y(t)| \leq y_0$.

On pose $\Gamma = \{t > 0, \text{ pour tout } 0 < u < t, \text{ on a } y'(u) < 0\}.$

- b) Montrer Γ est non vide. On pose alors $T = \sup \Gamma$.
- c) En déduire que pour 0 < t < T

$$\frac{y'(t)}{\sqrt{F(y_0) - F(y(t))}} = -1$$

puis que

$$t = \int_{y(t)}^{y_0} \frac{1}{\sqrt{F(y_0) - F(u)}} du.$$

d) On pose $A=\int_{-y_0}^{y_0}\frac{1}{\sqrt{F(y_0)-F(u)}}du$. Justifier que $T\leq A$ puis que T=A. (On pourra montrer que y'(T)=0.)

e) En déduire la période de y. (On pourra considérer la fonction z(t) =-y(t+T).)