Transformation de Fourier et convolution

Exercice 1. Calculer la trasformée de Fourier de la gaussienne $\exp(-\alpha x^2)$ *Indication*: On pourra dériver sous les signe intégral puis faire une intégration par parties.

Exercice 2. Montrer que $L^1(\mathbb{R})$ muni du produit de convolution est une algèbre qui ne possède pas d'unité.

Exercice 3. a) Montrer que l'équation f * f = f n'admet pas de solution non nulles dans $L^1(\mathbb{R})$.

b) Montrer que l'équation f * f = f admet une infinité de solutions dans L^2 .

Exercice 4. Soient $f, g \in L^2(\mathbb{R})$.

Montrer que $f * g \in L^{\infty}$ et que f * g est continue.

Indication: On commencera par le cas où f et g sont des indicatrices d'un segment, puis on utilisera un résultat de densité.

Exercice 5. Soit $f \in L^1(\mathbb{R})$, montrer que f est impaire si et seulement si pour tout $t \in \mathbb{R}$

$$\int_{R} f(x)e^{itx^{2}}dx = 0.$$

Exercice 6. (Espace de Wiener)

On note W l'ensemble des fonctions $L^1(\mathbb{R})$ dont la transformée de Fourier est aussi dans $L^1(\mathbb{R})$

- 1) Montrer que si $f \in W$ alors $f \in L^{\infty}(\mathbb{R})$. En déduire que pout tout $p \geq 1, f \in L^p(\mathbb{R})$.
 - 2) Montrer que $f \in W \Leftrightarrow \hat{f} \in W$.
 - 3) Montrer que si $f,g\in W$ alors f*g et fg appartiennent aussi à W.
- 4) Montrer que $N(f) = ||f||_1 + ||\hat{f}||_1$ définit une norme sur W et que W est complet pour N.
 - 5) Montrer que W est dense dans L^p pour $1 \le p < +\infty$.

Indication: On pourra montrer que l'espace de Schwartz est inclus dans W.

6) Montrer que W est dense dans $\mathcal{C}_0(\mathbb{R})$ (espace des fonctions continues tendant vers 0 à l'infini).

Exercice 7. (Non surjectivité de la transformation de Fourier de $L^1(\mathbb{R})$ dans $C_0(\mathbb{R})$).

1) Soit $f \in L^1(\mathbb{R})$ impaire. Montrer que

$$\hat{f}(t) = -(2i) \int_{x=0}^{+\infty} f(x) \sin(2\pi xt) dx.$$

2) On pose

$$\phi(x) = \int_{u=x}^{\infty} \frac{\sin(u)}{u} du.$$

Montrer que $\phi \in \mathcal{C}_0([0,\infty)$.

3) Soit $R \geq 1$. Montrer (par Fubini (en utilisant que ϕ est bornée) et avec un changement de variable que

$$\int_{t=1}^{R} \frac{\hat{f}(t)}{t} dt = -(2i) \int_{u=0}^{+\infty} \left(\int_{t=1}^{R} \frac{\sin(t)}{t} dt \right) f(u) du.$$

En déduire avec le théorème de convergence dominée que

$$\int_{t=1}^{R} \frac{\hat{f}(t)}{t} dt \to_{R \to +\infty} -2i \int_{0}^{\infty} f(x)\phi(2\pi x) dx.$$

- 4) Montrer que si une fonction impaire g est la transformée de Fourier d'une fonction $f \in L^1(\mathbb{R})$ alors f est aussi impaire.
 - 5) On pose

$$g(t) = \frac{\arctan t}{\ln(1+t^2)}.$$

Montrer que g est impaire, appartient à $\mathcal{C}_0(\mathbb{R})$ mais n'est pas la transformée de Fourier d'une fonction de $L^1(\mathbb{R})$.

Exercice 8. On note $\mathcal{S}(\mathbb{R})$ l'espace de Schartz des fonctions $\mathcal{C}^{\infty}(\mathbb{R})$ à décroissance rapide ainsi que toutes ses dérivées.

- 1) Montrer que $\mathcal{S}(\mathbb{R}) \subset L^1(\mathbb{R})$ et que la transformation de Fourier préserve $\mathcal{S}(\mathbb{R})$ (et est donc un isomorphisme de $\mathcal{S}(\mathbb{R})$ sur lui même.)
- 2) Montrer que si $f, g \in \mathcal{S}(\mathbb{R})$, alors f * g et fg appartiennent aussi à $\mathcal{S}(\mathbb{R})$.